基于互补滑模控制和迭代学习控制的永磁直线同步电动机速度控制  被引量:9

Speed control of permanent magnet linear synchronous motor based on complementary sliding mode control and iterative learning control

在线阅读下载全文

作  者:金鸿雁 赵希梅[1] JIN Hong-yan;ZHAO Xi-mei(School of Electrical Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China)

机构地区:[1]沈阳工业大学电气工程学院,辽宁沈阳110870

出  处:《控制理论与应用》2020年第4期918-924,共7页Control Theory & Applications

基  金:国家自然科学基金项目(51175349);辽宁省自然科学基金计划重点项目(20170540677);辽宁省教育厅科学技术研究项目(LQGD2017025)资助。

摘  要:为满足永磁直线同步电动机(PMLSM)伺服系统高速度高精度的要求,抑制不确定性对系统性能的影响,提出一种互补滑模控制(CSMC)和迭代学习控制(ILC)相结合的控制方法.该方法结合了CSMC强鲁棒性的优点和ILC跟踪精度高的特点,以CSMC中积分滑模面为基础设计新型迭代学习律,既可利用ILC对系统未建模动态进行估计,抑制端部效应、齿槽效应和摩擦力等周期不确定性的影响,又可利用CSMC减小参数变化和外部扰动等非周期不确定性对系统的影响,从而提高控制器的收敛速度和收敛精度,保证系统具有较强的速度跟踪性能.实验结果表明,该方法有效地提高了系统的动态响应能力,改善了速度跟踪精度.In order to satisfy the requirements of high speed and high precision of permanent magnet linear synchronous motor(PMLSM)servo system and to suppress the influence of uncertainties on system performance,a control method combining complementary sliding mode control(CSMC)with iterative learning control(ILC)is proposed.This method combines the advantages of strong robustness of CSMC and high tracking accuracy of ILC.Based on the integral sliding surface of CSMC,a new iterative learning law is designed.This method can not only estimate the un-modeled dynamics of the system and suppress periodic uncertainties such as end effects,cogging effects and friction forces by using ILC,but also reduce the influence of non-periodic uncertainties such as parameter variations and external disturbances by using CSMC,so as to improve the convergence speed and accuracy of the controller and ensure the system has strong speed tracking performance.The experimental results show that both the dynamic response ability and the speed tracking accuracy of the system are improved effectively.

关 键 词:永磁直线同步电动机 不确定性 互补滑模控制 迭代学习控制 鲁棒性 

分 类 号:TM341[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象