检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学通信与信息工程学院,上海200444
出 处:《工业控制计算机》2020年第4期40-41,45,共3页Industrial Control Computer
摘 要:提出了一种基于PEDCC-Loss和聚类的方法来提升CNN分类器分类性能的算法。利用CNN以及PEDCC-Loss来对图像进行特征提取,然后用BIRCH聚类算法对每类图像的隐特征进行聚类,以获得更好、更逼真的非线性边界,最大程度地减少误分类的边界点。将网络最后一层的PEDCC权重作为每类图像的中心,并以聚类后的子簇的簇心作为分类的辅助判断依据进行图像分类。实验结果表明,该算法的分类准确率相比CNN有一定的提升。This paper proposes an algorithm based on PEDCC-Loss and clustering to improve the classification performance of CNN classifiers.The features are extracted by convolutional neural network and PEDCC-Loss loss function.PEDCC(Predefined Evenly-Distributed Class Centroids)artificially specifies multiple evenly distributed class centroids,which can reach more compact intra-classes distance and more discrete inter-class distance.Then the latent features of each class of image are separately clustered by BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)clustering algorithm for obtaining a better and more realistic nonlinear boundary to minimize the boundary points of misclassification.The PEDCC weight of the last layer of the network is taken as the center of each type of image,and the centers of the clustered sub-clusters are used for the auxiliary judgment of classification.
关 键 词:CNN 分类器 聚类 PEDCC-Loss BIRCH
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15