检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卫佳乐 丁正生[1] WEI Jia-le;DING Zheng-sheng(School of Science,Xi’an University of Science and Technology,Xi'an 710054,China)
出 处:《计算机仿真》2020年第4期280-284,共5页Computer Simulation
基 金:国家自然科学基金(71473194)。
摘 要:针对自动编码器在强噪声环境下分类效果低的特征,提出了基于改进型稀疏自动编码器组合的深度学习方法。在采用计算相关熵的方法,增强了稀疏自动编码器对非高斯噪声的鲁棒性的基础上,利用卷积神经网络对自动编码器进行边缘降噪,接着将改进后的稀疏自动编码器和边缘降噪自动编码器相结合,得到新的稀疏边缘降噪自动编码器。实测数据的实验结果表明,新的稀疏边缘降噪自动编码器比现有的分类算法,计算时间更短、准确率更高、效果更明显。Since the poor classification results of traditional auto-encoders when applied to datasets with strong noise, we proposed a new method which is a combination of spare auto-encoder and deeplearning technique. On the basis that the spare auto-encoder’s robustness against non-Gaussian noise is increased by computing relative entropy, a convolutional neural network was used to reduce its marginal noise. Then combining the improved spare auto-encoder with marginalized denoising auto-encoder, the new spare marginalized denoising auto-encoder was obtained. The testing results show that our method has less runtime and higher accuracy than traditional ways.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.74.140