基于约束校对的协同过滤推荐算法  

在线阅读下载全文

作  者:李英[1] 

机构地区:[1]内江职业技术学院信息技术系

出  处:《内江科技》2020年第3期49-51,共3页

摘  要:根据用户的个性化需求进行网络信息推荐,在电子商务商品推荐和网络信息推送中具有应用价值。本文针对传统的语义关键词推荐方法的指向性精度不高的问题,提出一种基于协同过滤融合和个性化特征约束校对的信息推荐算法,首先构建P2P网络模型下的信息传输模型,对用户的个性化需求信息进行信息融合和语义信息素特征提取,然后采用自相关匹配滤波方法进行信息融合和滤波,实现对个性化特征的协同过滤和信息推荐,最后通过仿真实现进行性能测试。仿真结果表明,采用该算法进行信息推荐的数据召回率和配准度较高,耗时较短,实现个性化信息定制和推荐。

关 键 词:协同过滤推荐算法 信息素 个性化需求 信息推荐 个性化特征 特征提取 召回率 配准率 信息融合 相关匹配 

分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象