第一类卷积型Volterra积分方程的快速配置边值方法  

Fast Collocation Boundary Value Method for Convolution-type Volterra Integral Equation of the First Kind

在线阅读下载全文

作  者:刘玲 杨镇 LIU Ling;YANG Zhen(School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China)

机构地区:[1]贵州大学数学与统计学院,贵阳550025

出  处:《重庆工商大学学报(自然科学版)》2020年第4期83-88,共6页Journal of Chongqing Technology and Business University:Natural Science Edition

基  金:国家自然科学资助项目(11901133).

摘  要:针对第一类卷积型Volterra积分方程的数值解,研究其快速算法;基于特殊的多步配置方法,利用未计算的近似值,构造了高阶数值格式;通过格式,将原积分方程离散为线性方程组,其中系数矩阵可分解为Toeplitz矩阵和稀疏矩阵;利用快速Fourier变换计算该线性方程组,运算量为O(NlongN);数值例子验证了方法的高效性。This paper is devoted to studying the fast numerical method for convolution-type Volterra integral equation of the first kind.High order numerical schemes are devised by using special multi-step collocation methods,which depend on numerical approximations of the solution in the next several steps.Then the original integral equation is discretized into a system of linear equations,and the coefficient matrix can be decomposed into a Toeplitz matrix and a sparse matrix.The fast calculation of linear equations is implemented by using fast Fourier transform in this paper,and the calculation amount is O(N log N).Numerical examples are provided to demonstrate the efficiency of the proposed method.

关 键 词:VOLTERRA积分方程 配置边值法 TOEPLITZ矩阵 快速FOURIER变换 

分 类 号:O242.2[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象