检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴志敏 刘三阳[1] DAI Zhi-min;LIU San-yang(School of Mathematics and Statistics,Xidian University,Xi'an 710126,China;School of Science,Xi'an Technological University,Xi'an 710021,China)
机构地区:[1]西安电子科技大学数学与统计学院,陕西西安710126 [2]西安工业大学理学院,陕西西安710021
出 处:《数学杂志》2020年第3期267-282,共16页Journal of Mathematics
基 金:Supported by National Natural Science Foundation of China(11501437);Prin-cipal Fund Project of Xi'an Technological University(XAGDXJJ16019).
摘 要:本文研究了与微分形式中一类非齐次的Dirac-调和方程解相关的不等式问题.利用非齐次的Dirac-调和方程的条件和Dirac-调和算子D的运算法则,获得了Poincare不等式,Caccioppoli不等式和弱逆Holder不等式.作为相关不等式的应用,证明了Poincare不等式赋特殊权和在L^s(μ)平均域上的形式.本文的研究将齐次Dirac-调和方程解的相关不等式推广到了对应该方程非齐次的情形.In this paper,some inequalities related to the solutions of a class of nonhomogeneous Dirac-harmonic equations in differential forms are studied.By the conditions of the Dirac-harmonic equation and the operation rules of Dirac-harmonic operator D,Poincare inequality,Caccioppoli inequality and the weak inverse Holder inequality are obtained.As the applications of related inequalities,the forms of the Poincare inequality with special weights and in the L^s(μ)-averaging domains are proved.The related inequalities of solutions of homogeneous Dirac-harmonic equation are extended to the case of non-homogeneous Dirac-harmonic equation.
关 键 词:非齐次Dirac-调和方程 微分形式 范数不等式 权 L^s(μ)-平均域
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.173.146