检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张健铭 施元昊 徐正蓺[1,2] 魏建明 ZHANG Jianming;SHI Yuanhao;XU Zhengyi;WEI Jianming(Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
机构地区:[1]中国科学院上海高等研究院,上海201210 [2]中国科学院大学,北京100049 [3]上海大学通信与信息工程学院,上海200444
出 处:《计算机应用》2020年第6期1755-1762,共8页journal of Computer Applications
基 金:上海市科技创新行动计划项目(19DZ1202200);上海市青年科技英才扬帆计划(18YF1425600)。
摘 要:为了解决在室内非视距(NLOS)定位场景中超宽带(UWB)技术性能不佳、航位推算(PDR)算法累积误差过大的问题,以及由环境因素引起的UWB性能下降的问题,提出了一种基于UWB误差预测而自适应系数调节的UWB/PDR融合定位算法。该算法创新地提出了利用支持向量机(SVM)回归模型对复杂环境中UWB定位误差进行预测,并以此为基础,为常规的扩展卡尔曼滤波(EKF)算法添加了自适应调节系数,以提高UWB/PDR的融合定位效果。实验结果表明,所提算法在复杂UWB环境中可以有效预测当前UWB定位误差水平,并通过自适应调整融合系数提高精度,使得较常规EKF算法在一般区域的定位误差降低了18.2%,在UWB精度较差的区域中的定位误差降低了48.7%,从而减小了环境对UWB性能的影响;在包含UWB的视距内(LOS)及NLOS的复杂场景中,通过融合定位算法,将定位每百米误差由米级降低至分米级,解决了NLOS场景中PDR误差过大的问题。An Ultra WideBand(UWB)/Pedestrian Dead Reckoning(PDR)fusion positioning algorithm with adaptive coefficient adjustment based on UWB error prediction was proposed in order to improve the UWB performance and reduce the PDR accumulative errors in the indoor Non-Line-Of-Sight(NLOS)positioning scenes and solve the UWB performance degradation caused by environmental factors.On the basis of the creative proposal of predicting the UWB positioning errors in complex environment by Support Vector Machine(SVM)regression model,UWB/PDR fusion positioning performance was improved by adding adaptive adjusted parameters to the conventional Extended Kalman Filter(EKF)algorithm.The experimental results show that the proposed algorithm can effectively predict the current UWB positioning errors in the complex UWB environment,and increase the accuracy by adaptively adjusting the fusion parameters,which makes the positioning error reduced by 18.2%in general areas and reduced by 48.7%in the areas with poor UWB accuracy compared with those of the conventional EKF algorithm,so as to decrease the environmental impact on the UWB performance.In complex scenes of both Line-Of-Sight(LOS)and NLOS including UWB,the positioning error per 100 meters is reduced from meter scale to decimeter scale,which reduces the PDR errors in NLOS scenes.
关 键 词:室内定位 支持向量机 扩展卡尔曼滤波 自适应 融合定位
分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3