基于人工鱼群算法优化的车辆防滑PID神经网络控制研究  被引量:8

Research on anti-skid PID neural network control of vehicle based on artificial fish swarm algorithms

在线阅读下载全文

作  者:麦鹏 MAI Peng(College of Automotive Engineering,Xi’an Vocational University of Automobile,Xi’an 710600,Shaanxi,China)

机构地区:[1]西安汽车职业大学汽车工程学院,陕西西安710600

出  处:《中国工程机械学报》2020年第3期215-219,共5页Chinese Journal of Construction Machinery

摘  要:车辆在复杂路况上行驶,容易受到路面激励波形的干扰,导致车辆行驶中发生侧滑现象。对此,创建了车辆驱动模型简图,推导出车辆行驶的动力学方程式。引用传统PID控制方法,设计了PID神经网络控制方法。采用人工鱼群算法优化PID神经网络控制参数,给出具体优化步骤。采用Matlab软件对车辆滑转率和驱动力矩进行仿真,并与传统PID控制效果形成对比。仿真结果显示:采用传统PID控制方法,车辆控制系统反应时间较长,车辆滑转率和驱动力矩与理论值误差较大;而采用人工鱼群算法优化PID神经网络控制方法,车辆控制系统反应时间较短,车辆滑转率和驱动力矩与理论值误差较小。车辆采用人工鱼群算法优化PID神经网络控制方法,能够在线优化和调节PID控制参数,提高车辆行驶的稳定性,避免车辆发生侧滑现象。Vehicles running on complex road conditions are easily disturbed by road excitation waveforms,resulting in sideslip.In this regard,a sketch of vehicle driving model is created and the dynamic equation of vehicle driving is derived.The traditional PID control method is used to design the PID neural network control method.Artificial fish swarm algorithm is used to optimize the parameters of PID neural network control,and the specific optimization steps are given.The slip rate and driving moment of the vehicle are simulated by using Matlab software,and compared with the traditional PID control effect.The simulation results show that using traditional PID control method,the response time of vehicle control system is longer,and the errors between vehicle slip rate and driving moment and theoretical value are larger;while using artificial fish swarm algorithm to optimize the PID neural network control method,the response time of vehicle control system is shorter,and the errors between vehicle slip rate and driving moment and theoretical value are smaller.The artificial fish swarm algorithm is used to optimize the PID neural network control method,which can optimize and adjust the parameters of the PID control online,improve the stability of the vehicle and avoid the sideslip of the vehicle.

关 键 词:车辆 PID控制 神经网络 人工鱼群算法 滑转率 驱动力矩 

分 类 号:U461[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象