检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华大学理学院,成都610039
出 处:《科技视界》2020年第18期49-50,共2页Science & Technology Vision
基 金:国家自然科学基金“麦克斯韦界面问题的虚元法及其快速求解”(11701481)。
摘 要:微分中值定理是微分学基础理论的重要内容,是利用函数导数的局部性质研究函数的整体性质的重要工具,在数学分析中有着十分重要的地位,也是教学中重点和难点。由于其结论是定性的,在证明题中的应用相当广泛和重要。本文首先利用Rolle定理的结论,给出了Lagrange定理和Cauchy定理的一种简捷证明方法,并把此方法应用到同类型的证明题中。该方法简单直接,且利于学生理解和掌握。
关 键 词:ROLLE定理 LAGRANGE定理 CAUCHY定理 简捷证明 应用
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.72.3