检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张驰名 王庆凤[1] 刘志勤[1] 黄俊[1] 陈波[1] 付婕 周莹[2] ZHANG Chiming;WANG Qingfeng;LIU Zhiqin;HUANG Jun;CHEN Bo;FU Jie;ZHOU Ying(School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China;Radiology Department,Mianyang Central Hospital,Mianyang,Sichuan 621010,China)
机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621010 [2]绵阳市中心医院放射科,四川绵阳621010
出 处:《计算机工程》2020年第7期306-311,320,共7页Computer Engineering
基 金:四川省科技计划项目(2019JDRC0119);四川省军民融合研究院开放基金(2017SCII0220,2017SCII0219)。
摘 要:胸透X射线广泛应用于多种胸部常见病变的筛查任务,由于不同类型的胸科疾病在病理形态、大小、位置等方面往往具有多样性以及较大的差异性,且疾病样本具有比例不平衡等问题,导致难以通过深度学习技术来检测并定位胸部疾病区域。针对该问题,提出一种基于深度学习的胸部疾病诊断算法。通过压缩激励模块实现自适应特征重标定,以提高网络的细粒度分类能力。采用全局最大-平均池化层增强网络病理特征的空间映射能力,使用焦点损失函数降低简单易分类样本的权重,使得模型在训练时更专注易错分样本的学习。在此基础上,通过梯度加权类激活映射实现弱监督病变区域的可视化定位,为网络预测结果提供相应的视觉解释。在ChestX-Ray14官方数据划分标准下进行训练与评估,结果表明,该算法对14种常见胸部疾病的诊断效果较好,平均AUC值达到0.83。Chest X-ray is commonly used in the examination of multiple types of frequently occurring chest diseases.However,there is high difference and diversity of chest diseases in pathological morphology,size and location,and the ratio of disease samples is imbalanced.So it is challenging to detect and locate chest diseases by deep learning.To address the above problems,a diagnostic algorithm for chest diseases is proposed.Firstly,the adaptive feature recalibration is implemented through the squeeze-excitation module to improve the fine-grained classification ability of the network.Secondly,the spatial mapping ability of the pathological features of the network is enhanced by the global max-average pooling layer.Then the focus loss function is used to reduce the weight of easily classified samples,so that the model can focus more on the learning of easily misclassified samples in training.Finally,the visualized location of weakly supervised lesion areas is implemented through the Gradient-weighted Class Activation Mapping(GCAM),providing corresponding visual interpretation of network prediction results.Training and evaluation results on the official data division criteria of ChestX-Ray14 show that the proposed algorithm has excellent performance in the diagnosis of 14 frequently occurring chest diseases with an average AUC of 0.83.
关 键 词:卷积神经网络 医学图像分类 计算机辅助诊断 胸部X射线 胸部病变诊断
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15