检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李佳禧 邱东[1] 杨宏韬[1] 刘克平[1] LI Jia-xi;QIU Dong;YANG Hong-tao;LIU Ke-ping(School of Electrical and Electronic Engineering,Changchun University of Technology,Changchun 130012,China)
机构地区:[1]长春工业大学电气与电子工程学院,长春130012
出 处:《组合机床与自动化加工技术》2020年第8期92-96,100,共6页Modular Machine Tool & Automatic Manufacturing Technique
基 金:吉林省科技发展计划技术攻关项目(20190303099SF);吉林省省级产业创新专项资金项目(2019C010);吉林省科技发展计划重点研发项目(20200401118GX)。
摘 要:针对传统识别方法受工件的摆放角度、位置影响较大,鲁棒性差的问题,提出了一种基于改进的YOLO v3的工件识别方法。首先,采用深度可分离卷积网络对Darknet网络进行结构改进,减少了计算复杂度,提高了检测速率;其次通过K-means聚类方法对数据集参数进行聚类,得到了更适合工件识别的预测框,确定了预测框的参数;然后运用了图像增强的方法对采集的图像集进行处理,扩充了训练样本;最后在训练迭代后,采用多种评价指标联合评价的方法,将所设计的算法与多种检测算法进行对比。实验结果表明,基于改进的YOLO v3的工件识别方法在测试集的准确率达96.5%,召回率达93.4%,识别速率达63fps,更能满足工业生产中工件识别的需求。Aiming at the problem that the traditional identification method is greatly affected by the placement Angle and position of the workpiece,and the robustness is poor,a workpiece identification method based on the improved YOLO v3 is proposed.Firstly,a deep separable convolutional network is used to improve the structure of Darknet network,which reduces the computational complexity and improves the detection rate.Secondly,k-means clustering method is used to cluster the data set parameters,and the prediction box more suitable for workpiece identification is obtained,and the parameters of the prediction box are determined.Then the image set is processed by image enhancement method to expand the training sample.Finally,after training iteration,the method of joint evaluation of multiple evaluation indexes is adopted to compare the designed algorithm with various detection algorithms.Experimental results show that the workpiece identification method based on the improved YOLO v3 has an accuracy rate of 96.5%,recall rate of 93.4%and identification rate of 63fps in the test set,which can better meet the requirements of workpiece identification in industrial production.
分 类 号:TH16[机械工程—机械制造及自动化] TG65[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229