检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范志文 光翠娥[1] 干建平[2] FAN Zhiwen;GUNAG Cuie;GAN Jianping(State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214222,China;Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization/Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains,Huanggang Normal College,Huanggang 438000,China)
机构地区:[1]食品科学与技术国家重点实验室,江南大学,江苏无锡214122 [2]黄冈师范学院经济林木种质改良与资源综合利用湖北省重点实验室/大别山特色资源开发湖北省协同创新中心,湖北黄冈438000
出 处:《食品与生物技术学报》2020年第7期83-90,共8页Journal of Food Science and Biotechnology
摘 要:探讨了反向传播神经网络模型预测酱牛肉中金黄色葡萄球菌生长情况的准确性。收集不同温度(15、25、36℃)和不同初始接菌量(10~2、10~3、10~4CFU/mL)组合条件下金黄色葡萄球菌在酱牛肉中的生长数据,借助Python和Matlab软件,筛选出拟合效果最佳的网络结构,构建起反向传播神经网络模型,同时建立起修正的Gompertz模型作对比。通过平方根误差、偏差因子和准确因子分别检验两个模型的准确性。结果显示:网络结构为2-35-30的模型拟合效果最佳,反向传播神经网络模型与修正的Gompertz模型误差均在可接受范围内;与修正的Gompertz模型相比,反向传播神经网络误差更小,能更加准确预测金黄色葡萄球菌在酱牛肉中的生长情况。This study investigated the accuracy of back propagation artificial neural network model for prediction of the growth of Staphylococcus aureus in sauced beef.The data of Staphylococcus aureus growing in sauced beef were collected at different temperatures(15,25,36℃)with different initial inoculations(10~2,10~3,10~4 CFU/mL).With the saftwares of Python and MATLAB,the network structure with the best fitting effect was screened out and the back propagation neural network model was constructed.At the same time,the modified Gompertz model was established for the comparison.The accuracy of the two models was tested using square root error,bias and accuracy factors.The results showed that the model with the network structure of 2-35-30 had the best fitting.The errors generated in the back propagation neural network model and the modified Gompertz model were within an acceptable range.Compared with that of the modified Gompertz model,the error of back propagation neural network was smaller and it could be used to predict the growth of Staphylococcus aureus in sauced beef with higher accuracy.
分 类 号:TS201.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143