检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王任华 王本璇 孔军[3] 蒋晨琛 Wang Renhua;Wang Benxuan;Kong Jun;Jiang Chenchen(Department of Information Technology and Network Security,People’s Public Security University of China,Beijing 100038,China;Department of Electronic and Information Engineering,Hongkong Polytechnic University,Hongkong 999077,China;School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
机构地区:[1]中国人民公安大学信息技术与网络安全学院,北京100038 [2]香港理工大学电子及资讯工程系,中国香港999077 [3]江南大学物联网工程学院,江苏无锡214122
出 处:《南京理工大学学报》2020年第4期462-470,共9页Journal of Nanjing University of Science and Technology
基 金:国家自然科学基金(61362030);中国博士后科学基金(2015M571720);江苏省博士后科学基金(1601416C);公安部技术研究计划(2014JSYJB007)。
摘 要:基于相关滤波器(Correlation filter,CF)的目标跟踪算法因其高效率而引起了人们越来越多的兴趣,但这类算法对部分遮挡和形变十分敏感,可能导致最终跟踪失败。针对这一问题,该文将自适应互补模型引入到基于多分块的跟踪框架中,联合全局模型与局部分块模型来应对严重遮挡问题,并设置单独的快速尺度估计模块获得尺度信息。在跟踪基准数据集OTB2013上的实验表明,该文算法可以有效应对跟踪过程中的遮挡和形变问题,在保证实时性的同时提高目标跟踪精度。Correlation filter has drawn increasing interest in target tracking due to its high efficiency,however,it is sensitive to partial occlusion and irregular deformation,which may result in tracking failure finally.To address this problem,this paper introduces the model complementary estimation into the part-based tracking framework,and combines the global and local model to deal with the severe occlusion problem.Also,this paper utilizes a separate fast multi-scale estimate method to obtain the information about scale variations.A large number of comparison experiments on the tracking benchmark datasets OTB2013 can demonstrate that the proposed algorithms perform favorably against the effect of target deformation and occlusion.In addition,our methods achieve the real-time online tracking while obtaining high accuracy.
关 键 词:目标跟踪 目标遮挡 目标形变 相关滤波 多分块跟踪 联合模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30