检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李家恒 李彪[1] LI Jiaheng;LI Biao(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)
机构地区:[1]宁波大学数学与统计学院,浙江宁波315211
出 处:《宁波大学学报(理工版)》2020年第5期105-113,共9页Journal of Ningbo University:Natural Science and Engineering Edition
基 金:国家自然科学基金(11775121,11435005);浙江省教育厅科研项目(Y200907622);宁波大学科技学院预研项目(003-21021003).
摘 要:Clarkson和Kruskal发展的直接法(CK直接法)是求解非线性微分方程相似约化的一种强有力的方法.本文以Kadomtsev-Petviashvilli(KP)方程为例,运用CK直接法把KP方程简化为3种类型的(1+1)维偏微分方程,这3种偏微分方程等价于经典Lie方法得到的3种具有不同独立变量的相似约化方程.KP方程的解包含了更多经典Lie方法所遗漏的任意函数,例如,CK直接法得到的第3类约化可以分为3个子情形,而经典Lie法得到的KP方程的第3类解只是我们结果的一个子情形的特例.The direct method developed by Clarkson and Kruskal is a very efficient method to solve the similarity reduction of nonlinear differential equations.In this paper the Kadomtsev-Petviashvilli(KP)equation is taken as an example to simplify KP equation into three types of(1+1)dimensional partial differential equations using CK direct method.These three partial differential equations are equivalent to the three similar reduction equations with different independent variables obtained through the classical Lie method.The solution to the KP equation contains more arbitrary functions which the classical Lie method lacks.For example,the third type of reduction obtained using the direct method can be divided into three subcases,while the third type of solution to the KP equation obtained using the classical Lie method serves as a special case of a subcase of the result derived in this work.
关 键 词:相似约化 KP方程 CK直接法 (1+1)维偏微分方程 Lie方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195