基于改进蚁群算法的时间最优路径规划研究  被引量:6

Study on Time Optimal Path Planning Based on Improved Ant Colony Algorithm

在线阅读下载全文

作  者:赵梦彤 李颖宏[1] 范晶晶 ZHAO Mengtong;LI Yinghong;FAN Jingjing(North China University of Technology, School of Electrical and Control Engineering, Beijing 100144, China)

机构地区:[1]北方工业大学电气与控制工程学院,北京100144

出  处:《车辆与动力技术》2020年第3期7-10,14,共5页Vehicle & Power Technology

摘  要:在经典蚁群算法的基础上,融合通过性等级评估值和推荐车速,设计以通过时间最短为目标的改进蚁群算法启发函数;以车辆安全性建立动态约束,得到兼顾通行效率、通过性和安全性的优化路径.仿真实验结果表明:改进蚁群算法相比经典蚁群算法,通行时间节约了11.1%.能够得到一条更加符合车辆通行特性且通过时间最短的规划路径,使得车辆更安全、平稳、快速地到达预期位置.On the basis of classical ant colony algorithm,combining the evaluation value of trafficability grade and the recommended speed,an improved ant colony algorithm heuristic function is designed with the goal of shortest passing time.The dynamic constraints are established by vehicle safety,and the optimized path considering traffic efficiency,trafficability and safety is obtained.The simulation results show that the improved ant colony algorithm can save 11.1%of the traffic time compared with the classical ant colony algorithm.It can get a more consistent with the vehicle traffic characteristics and the shortest passing time planning path,so that the vehicle can reach the expected position more safely,smoothly and quickly.

关 键 词:履带无人车辆 通过性等级评估 路径规划 蚁群算法 

分 类 号:U469.694[机械工程—车辆工程] U461.99[交通运输工程—载运工具运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象