《劳动合同法》和公司并购绩效--基于双重差分模型的实证检验  被引量:5

Labor Contract Law and Corporate M&A Performance--Evidence from the DID Model

在线阅读下载全文

作  者:朱冰[1] Zhu Bing

机构地区:[1]中央财经大学会计学院,100081

出  处:《会计研究》2020年第6期108-133,共26页Accounting Research

基  金:国家自然科学基金项目(71432048,71802207);教育部人文社科青年基金项目(18YJC630271);中央财经大学“青年英才”培育支持计划(QYP2004)对本文的资助。

摘  要:本文以2000-2016年中国上市公司的并购事件为样本,基于2008年《劳动合同法》这一政策冲击在不同劳动密集型的目标方间的异质性,通过构建双重差分模型来检验《劳动合同法》对公司并购绩效的影响。研究发现,《劳动合同法》实施之后,当目标方的劳动密集度比较高时,公司的并购绩效显著降低。我们还发现《劳动合同法》颁布之后,公司并购高劳动密集型标的方的可能性下降。进一步分析表明,当并购方属于民营企业、当并购双方都处于同一行业和同一地区时、当并购双方均处于法律环境比较好的地区时,《劳动合同法》对公司并购绩效所产生的负面作用更强。本文还进行了一系列的稳健性检验。本文在丰富劳动保护和并购相关文献的同时,其研究结论对于政府和企业都有一定的启示意义。This paper takes labor law(passed and executed in 2008)as an exogenous shock to employment protection.As this shock may produce heterogeneous effects between high labor intensity target and low labor intensity target,this paper explores the difference-in-difference model to identify the causal relationship between Labor Contract Law and M&A performance based on the A-share listed firms from 2000 to 2016.We find that implementation of labor contract law results in a greater reduction in M&A performance when the target industry is characterized by high labor intensity.We also find that few high labor intensity M&A occurs when target employment is protected.Additionly,this negative performance effect is significantly more negative for the private enterprises,for the bidder and the target belonged to the province with better law enforcement environment,for the bidder and the target belonged to the same industry and same province.We also do several robust tests.These findings have enriched the research on the economic consequence of labor protection and supplemented the paper of influential factors of M&A performance.Our study has certain enlightenment significance for the government and company.

关 键 词:劳动合同法 劳动密集度 并购绩效 

分 类 号:D922.52[政治法律—民商法学] F271[政治法律—法学] F832.51[经济管理—企业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象