改进SSD模型的路面病害图像检测系统  被引量:6

Pavement Distress Image Detection System Based on Improved SSD Model

在线阅读下载全文

作  者:赵雪寒 刘庆华[1] ZHAO Xue-han;LIU Qing-hua(Electronics and Information Faculty,Jiangsu University of Science and Technology,Zhenjiang 212001,China)

机构地区:[1]江苏科技大学电子信息学院,江苏镇江212001

出  处:《软件导刊》2020年第11期217-220,共4页Software Guide

基  金:国家自然科学基金项目(51008143);江苏省六大高峰人才项目(XYDXX-117);江苏省研究生科研创新项目(SJKY19_2641)。

摘  要:为解决公路路面病害图像特征不突出、检测精度低等问题,提出一种基于改进SSD模型的路面病害检测系统。利用梯度下降Sobel算子优化SSD模型中图像特征提取的卷积网络层,突出路面病害图像特征;通过改进SSD模型实现横向裂缝、纵向裂缝、块状裂缝、路面凹陷以及其它类路面的病害图像检测;结合Jetson-Nano板载化系统以及基于GO语言的Tensorflow框架实现路面病害检测及分类。实验结果表明,系统路面病害分类准确度为91.28%,比未改进的SSD模型识别准确度提高7.36%,证明该优化模型有效。A pavement distress detection system based on a modified SSD model is raised in the paper to solve the problems of notprominent road image features and low accuracy of detection.Firstly,gradient descent Sobel operator is used to modify the convolution neural network extract image features in the SSD model to highlight features of pavement distress pictures.The improved SSD model is used to realize the detection of transverse cracks,longitudinal cracks,block cracks,road depressions and other types of roads.Then the detection and classification of powement distrers is realised by employing Jetson-Nano onboard system and Tensorflow framework based on GO language.The experimental data including collected pavement distress pictures and that generated by the adversarial gen⁃eration network.Results show that the classifying accuracy of our system is 91.28%which is 7.36%higher than that using the unmodi⁃fied SSD model,which proves that the proposed optimization model has practicality.

关 键 词:路面病害 目标检测 神经网络 SOBEL算子 板载化系统 图像检测 

分 类 号:TP306[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象