一类双参数Rayleigh方程的摄动增量解法  被引量:1

Perturbation Incremental Method for a Class of Rayleigh Equations with Two Parameters

在线阅读下载全文

作  者:陈章 汪海玲 李祖雄 CHEN Zhang;WANG Hailing;LI Zuxiong(School of Mathematics and Statistics,Hubei Minzu University,Enshi 445000,China;College of Mathematics and Statistics,Guangxi Normal University,Guilin 541004,China;College of Mathematics and Statistics,Chongqing Three Gorges University,Wanzhou 404199,China)

机构地区:[1]湖北民族大学数学与统计学院,湖北恩施445000 [2]广西师范大学数学与统计学院,广西桂林541004 [3]重庆三峡学院数学与统计学院,重庆万州404199

出  处:《湖北民族大学学报(自然科学版)》2020年第4期424-427,共4页Journal of Hubei Minzu University:Natural Science Edition

基  金:国家自然科学基金项目(11701163;11561022).

摘  要:运用摄动增量法,研究了一类双参数的Rayleigh方程的极限环.首先运用摄动法,求出λ=0时的极限环的零阶摄动解和参数μ,再运用参数增量法,突破了控制参数必须为小参数的局限,增量过程中运用谐波平衡法解决求解线性方程组问题.然后通过控制参数λ的大小,得到满足一定精确度的极限环的解析表达式.最后通过数值模拟,固定增量大小,将得到的结果与数值积分法得到的结果作比较,表明该方法是有效的.In this paper,the perturbation incremental method is used to study limit cycles of a class of Rayleigh equations with two parameters.Firstly,the perturbation method is used to obtain the zero order perturbation solution of limit cycle and parameterμwhenλ=0.Then,the parameter incremental method is used to break through the limitation that the control parameters must be small parameters.In the incremental process,the harmonic balance method is used to solve the problem of solving linear equations,the analytical expressions of limit cycles satisfying certain accuracy are obtained by controlling the parameterλ.Finally,through fixed increments and numerical simulation,the results are compared with those obtained by numerical integration method,which show that the method is effective.

关 键 词:RAYLEIGH方程 双参数 非线性 极限环 摄动增量法 

分 类 号:O193[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象