检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈强 岳东杰[1] 陈健[1] CHEN Qiang;YUE Dongjie;CHEN Jian(School of Earth Science and Engineering,Hohai University,8 West-Focheng Road,Nanjing 211100,China)
机构地区:[1]河海大学地球科学与工程学院,南京市211100
出 处:《大地测量与地球动力学》2020年第12期1303-1307,共5页Journal of Geodesy and Geodynamics
摘 要:针对传统基于特征的粗配准效率低、误匹配较多的不足,提出一种基于特征空间匹配的配准方法。利用简化的PointNet模型实现特征空间的提取,以优化的点云PPF信息作为输入,根据提取的特征空间向量计算欧氏距离以筛选匹配点,通过RANSAC剔除误匹配点对完成粗配准,利用ICP实现精配准。实验结果表明,本文算法相比FPFH和SHOT算法与ICP结合可有效提升配准效率,且配准结果的均方根误差较小。Aiming at the shortcomings of traditional feature-based coarse registration with low efficiency and many mismatches,we propose a registration method based on feature space matching.We extract the feature space using a simplified PointNet model.We take optimized point cloud PPF information as input and calculate the Euclidean distance according to the extracted feature space vector to filter out matching points.We eliminate the mismatched points to complete the coarse registration through RANSAC,and use ICP to realize fine registration.The results show that the proposed algorithm combined with ICP greatly improves the registration efficiency compared with FPFH and SHOT algorithm,and RMSE of the registration result is smaller.
关 键 词:三维扫描 点云配准 PointNet模型 随机采样一致性 迭代最近点算法
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.51.214