检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁文韬 康雁[1] 李浩[1] 李晋源 宁浩宇 LIANG Wentao;KANG Yan;LI Hao;LI Jinyuan;NING Haoyu(School of Software,Yunnan University,Kunming 650500,China)
机构地区:[1]云南大学软件学院,昆明650500
出 处:《计算机工程》2020年第12期254-261,269,共9页Computer Engineering
基 金:国家自然科学基金(61762092,61762089);云南省软件工程重点实验室开放基金(2017SE204)。
摘 要:遥感图像场景分类任务较普通图像分类任务的特征范围更广且分布更复杂,难以实现精准分类。针对遥感图像特征分布与神经网络结构存在一定适应性关系的情况,提出一种利用复杂度适配聚类的自适应神经网络遥感场景分类模型。构建含有颜色矩、灰度共生矩阵、信息熵、信息增益、线占比等多重特征的遥感图像复杂度评价矩阵,通过计算图像相似性得到不同复杂度的图像子集,采用层次聚类方式将图像复杂度分为高、中、低等级,并分别使用DenseNet、CapsNet和SENet神经网络对复杂度适配的图像子集进行训练,最终获得自适应遥感场景分类模型。实验结果表明,与DenseNet、CapsNet、SENet等模型相比,该模型能更有针对性地提取不同复杂度的图像特征,具有更高的遥感场景分类准确率。Compared with common image classification tasks,the classification of remote sensing images has a wider feature range and more complex distribution,which makes it difficult to achieve accurate classification.In view of the adaptive relationship between the feature distribution of remote sensing images and the structure of neural network,this paper proposes a remote sensing scene classification model using adaptive neural network based on complexity-adaptive clustering.The complexity evaluation matrix of remote sensing images is constructed,which includes multiple features including color moment,gray level co-occurrence matrix,information entropy,information gain and line ratio.Image subsets with different complexity degrees are obtained by calculating image similarity.The image complexity is divided into high,medium and low levels by using hierarchical clustering.Then the complexity-adaptive image subsets are trained by using DenseNet,CapsNet and SENet to obtain the adaptive remote sensing scene classification model.Experimental results show that compared with DenseNet,CapsNet,SENet and other models,this model has better performance in extracting image features with different complexity degrees,and has higher accuracy of remote sensing scene classification.
关 键 词:遥感图像 场景分类 图像复杂度 自适应神经网络 深度学习
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.203.127