检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯坤元 黎仁刚[1] 童真 高墨韵 HOU Kun-yuan;LI Ren-gang;TONG Zhen;GAO Mo-yun(The 723 Institute of CSIC,Yangzhou 225101,China)
机构地区:[1]中国船舶重工集团公司第七二三研究所,江苏扬州225101
出 处:《舰船电子对抗》2020年第6期69-75,共7页Shipboard Electronic Countermeasure
摘 要:现代战场电磁环境日益复杂,信号密度不断增加,雷达和通信信号的调制识别是电子对抗及电子侦察的重要环节。人工神经网络中的深度学习网络由于具有强大的表征学习能力,可以从原始数据中提取出各种复杂的特征。采取中频信号延迟自相关结合时频分析的预处理方法,再将时频信息作为卷积神经网络的输入进行训练,最终得到调制方法识别分类的结果。基于工作的实际需求,对深度学习在信号调制识别中提出了一些展望,如进一步提高在低信噪比下的识别率和研究深度学习调制识别混合架构。The electromagnetic environment of modern battlefields is becoming increasingly complex and the signal density is constantly increasing.The modulation and identification of radar and communication signals are important parts of electronic countermeasure and electronic reconnaissance.The deep learning network in artificial neural networks has strong representation learning capability,which can extract various complex features from the original data.This paper adopts a preprocessing method of intermediate frequency signal delay autocorrelation combined with time-frequency analysis,then takes the time-frequency information as the input of convolutional neural network to train,finally gets the result of recognition and classification through the modulation method.Based on the actual needs of the work,some prospects are proposed for the deep learning in signal modulation and recognition,such as further improving the recognition rate under low signal-tonoise ratio and studying the hybrid architecture of modulation and recognition for deep learning.
关 键 词:雷达 通信 信号调制识别 延迟自相关 时频分析 卷积神经网络
分 类 号:TN97[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.100.195