检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江旭 耿楠[1,2,3] 张志毅[1,2,3] 胡少军[1,2,3] Jiang Xu;Geng Nan;Zhang Zhiyi;Hu Shaojun(College of Information Engineering,Northwest A&F University,Yangling Shaanxi 712100,China;Key Laboratory of Agricultural Internet of Things for Ministry of Agriculture&Rural Affairs,Northwest A&F University,Yangling Shaanxi 712100,China;Shaanxi Key Laboratory of Agricultural Perception&Intelligent Service,Northwest A&F University,Yangling Shaanxi 712100,China)
机构地区:[1]西北农林科技大学信息工程学院,陕西杨凌712100 [2]西北农林科技大学农业农村部农业物联网重点实验室,陕西杨凌712100 [3]西北农林科技大学陕西省农业信息感知与智能服务重点实验室,陕西杨凌712100
出 处:《计算机应用研究》2021年第1期305-310,共6页Application Research of Computers
基 金:陕西省重点研发计划资助项目(2019ZDLNY07-06-01)。
摘 要:针对点云配准中效率低、误差大、抗噪性弱等问题,提出了一种改进的基于t检验的迭代最近点(T-ICP)算法。在初始配准阶段,采用统计分析对源点云和目标点云中的离群点进行标记并提取非离群点,然后采用主成分分析法(PCA)计算非离群源点云和非离群目标点云之间的变换矩阵,并将变换矩阵应用于源点云。在精配准阶段,以迭代最近点(ICP)算法作为基本框架,通过对候选点对的邻域距离分布进行t检验来剔除错误点对,并采用均匀分布策略来搜索点对,保证点云的完整形态配准。实验结果表明,相较于迭代最近点算法以及近两年一些改进的配准算法,该算法在效率和精度上分别提高了10%~50%和4%~40%,并具有较好的鲁棒性。Aiming at the problems of low efficiency,large error and weak anti-noise ability in point cloud registration,this paper proposed an improved iterative closest point registration algorithm based on t test(test-iterative closest point,T-ICP).In initial registration,this paper used statistical analysis to mark outliers in point cloud and extracted non-outliers.Then,it used principal component analysis(PCA)to calculate the transformation matrix between the non-outlier source point cloud and the non-outlier target point cloud,and the transformation matrix could transform source point cloud to target point cloud.In fine registration,this paper used iterative closest point(ICP)algorithm as the basic framework and introduced t test and uniform distribution.T test could analyze the neighborhood distance distribution of candidate point pairs and eliminate wrong point pairs.Uniform distribution as the strategy of searching point pairs could ensure complete morphological registration of point cloud.Experimental results show that the proposed algorithm improves the efficiency and accuracy by 10%~50%and 4%~40%,respectively,and has better robustness,compared with ICP and some improved registration algorithms in the last two years.
关 键 词:点云配准 主成分分析 迭代最近点 邻域距离分布 T检验 均匀分布
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222