检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭雅婷 叶国菊[1] 刘尉[1] 赵大方 GUO Ya-ting;YE Guo-ju;LIU Wei;ZHAO Da-fang(College of Science,Hohai University,Nanjing 210098,China;School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)
机构地区:[1]河海大学理学院,江苏南京210098 [2]湖北师范大学数学与统计学院,湖北黄石435002
出 处:《数学杂志》2021年第1期12-24,共13页Journal of Mathematics
基 金:the Fundamental Research Funds for the Central Universities(2019B44914);Natural Science Foundation of Jiangsu Province(BK20180500);the National Key Research and Development Program of China(2018YFC1508100).
摘 要:本文研究Henstock-Kurzweil可积(HK可积)函数空间中的一个经典问题.文章通过研究分布Henstock-Kurzweil积分(DHK积分)的性质,给出了该问题的否定答案.进一步,利用收敛性获得了函数HK可积的一个充分必要条件.最后,在上述结论的基础上刻画了HK可积函数空间的紧性.所得结果丰富和推广了HK可积函数空间理论.In this paper, we are concerned with a classical question in the space of Henstock-Kurzweil(shortly HK) integrable functions. A negative answer to this question is given by using the theory of the distributional Henstock-Kurzweil(shortly DHK) integral. Furthermore, we use convergence to prove a sufficient and necessary condition for a function to be HK integral and then give a characterization of compactness in the space of the HK integrable functions. The results enrich and extend the theory of HK integrable functions space.
关 键 词:Henstock-Kurzweil积分 分布导数 分布Henstock-Kurzweil积分 收敛定理 紧性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.198.133