基于交互特征表示的评价对象抽取模型  被引量:1

Aspect Extraction Model Based on Interactive Feature Representation

在线阅读下载全文

作  者:曾碧卿 曾锋 韩旭丽 商齐 Zeng Biqing;Zeng Feng;Han Xuli;Shang Qi(School of Software,South China Normal University,Foshan,Guangdong 528225;School of Computer Science,South China Normal University,Guangzhou 510631)

机构地区:[1]华南师范大学软件学院,广东佛山528225 [2]华南师范大学计算机学院,广州510631

出  处:《计算机研究与发展》2021年第1期224-232,共9页Journal of Computer Research and Development

基  金:国家自然科学基金项目(61772211,61503143)。

摘  要:评价对象抽取是对象级情感分析的关键任务之一,评价对象抽取结果会直接影响对象级情感分类的准确率.在评价对象抽取任务中,借助手工特征加强模型性能的方式既消耗时间又耗费人力.针对数据规模小、特征信息不充分等问题,提出一种基于交互特征表示的评价对象抽取模型(aspect extraction model based on interactive feature representation,AEMIFR).相比其他模型,AEMIFR模型结合字符级嵌入与单词嵌入,捕获单词的语义特征、字符的形态特征以及字符与词语之间的内在联系.而且,AEMIFR模型获取文本的局部特征表示和上下文依赖特征表示,并学习2种特征表示之间的交互关系,增强2种特征之间的相似特征的重要性,减少无用特征对模型的消极影响,以及学习更高质量的特征表示.最后在SemEval 2014,SemEval 2015,SemEval 2016中的数据集L-14,R-14,R-15,R-16上进行实验,取得具有竞争力的效果.Aspect extraction is one of the key tasks in aspect level sentiment analysis,whose result will directly affect the accuracy of aspect level sentiment classification.In aspect extraction task,it is both time and labor consuming to enhance the performance of the model by handcraft features.Aiming at resolving the problems of insufficient data scale,insufficient feature information,etc.,aspect extraction model based on interactive feature representation(AEMIFR)is proposed.Compared with other models,AEMIFR combines character level embedding and word embedding to capture the semantic features of words,the morphological features of characters and the internal relationship between characters and words.Furthermore,AEMIFR obtains the local feature representation and context-dependent feature representation of text,learns the interaction between the two feature representations,enhances the importance of similar features between the two feature representations,reduces the negative impact of useless features on the model,and learns higher quality feature representations.Finally experiments are conducted on the data sets L-14,R-14,R-15 and R-16 in SimEval 2014,SemEval 2015 and SemEval 2016,and the competitive effect is achieved.

关 键 词:评价对象抽取 对象级情感分析 特征交互 自然语言处理 神经网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象