基于层次隐马尔可夫模型和神经网络的个性化推荐算法  被引量:4

PERSONALIZED RECOMMENDATION ALGORITHM BASED ON HIDDEN MARKOV MODEL AND NEURAL NETWORKS

在线阅读下载全文

作  者:郭聃[1] Guo Dan(Department of Electronic Information Technology,Sichuan Modern Vocational College,Chengdu 610207,Sichuan,China)

机构地区:[1]四川现代职业学院电子信息技术系,四川成都610207

出  处:《计算机应用与软件》2021年第1期313-319,329,共8页Computer Applications and Software

摘  要:传统推荐系统将推荐准确性作为主要目标,而推荐结果的多样性和个性化有所欠缺。对此,设计一种基于层次隐马尔可夫模型和神经网络的推荐算法。采用层次隐马尔可夫模型建模用户喜好和上下文环境的关系,并通过隐马尔可夫模型预测上下文。设计神经网络结构来解决协同过滤推荐的问题,同时神经网络满足贝叶斯个性化排序的条件,实现对推荐列表的个性化排序。实验结果表明,该算法在保持推荐准确性的前提下,提高了推荐的多样性和个性化。Traditional recommendation systems treat recommendation accuracy as the main objective,but they are lack of diversity and personalization.I design a personalized recommendation system based on hidden Markov model and neural networks.It adopted hierarchical hidden Markov to model the relationships between user preference and context,and it predicted the context through hidden Markov model.The neural networks was designed to handle collaborative filtering recommendation problem,meanwhile the neural networks met the conditions of Bayesian personalized ranking to realizepersonalized ranking for recommendation list.The experimental results show that my algorithm improves the diversity and personalization of recommendation while maintaining the accuracy of recommendation.

关 键 词:协同过滤推荐系统 隐马尔可夫模型 神经网络 机器学习 贝叶斯个性化排序 推荐多样性 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象