检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毛振宇 窦慧莉[1] 宋晶晶[1,3] 姜泽华 王平心 Mao Zhenyu;Dou Huili;Song Jingjing;Jiang Zehua;Wang Pingxin(School of Computer,Jiangsu University of Science and Technology,Zhenjiang,212003,China;School of Science,Jiangsu University of Science and Technology,Zhenjiang,212003,China;Fujian Province University Key Laboratory of Data Science and Intelligent Application,Zhangzhou,363000,China)
机构地区:[1]江苏科技大学计算机学院,镇江212003 [2]江苏科技大学理学院,镇江212003 [3]数据科学与智能应用福建省高校重点实验室,漳州363000
出 处:《南京大学学报(自然科学版)》2021年第1期150-159,共10页Journal of Nanjing University(Natural Science)
基 金:国家自然科学基金(62076111,61906078);数据科学与智能应用福建省高校重点实验室开放课题(D1901)。
摘 要:在邻域粗糙集的研究中,往往借助给定的半径来约束样本之间的相似性进而实现邻域信息粒化,需要注意的是,若给定的半径较大,则不同类别的样本将落入同一邻域中,易引起邻域中信息的不精确或不一致.为改善这一问题,已有学者给出了伪标记邻域的策略,然而无论是传统邻域还是伪标记邻域,都仅仅使用样本间的距离来度量样本之间的相似性,忽略了邻域信息粒内部不同样本所对应的邻域之间的结构关系.鉴于此,通过引入邻域距离度量,提出一种共现邻域的信息粒化机制,并构造了新型的共现邻域以及伪标记共现邻域粗糙集模型,在此基础上使用前向贪心搜索策略实现了所构造的两种模型下的约简求解.实验结果表明,与传统邻域关系以及伪标记邻域关系所求得的约简相比,利用共现邻域方法求得的约简能够在不降低分类器准确率的前提下产生更高的约简率.In the research of neighborhood rough set,a radius is generally appointed to restrain the similarities between the samples,which follows that the neighborhood information granulation can be realized.It should be noticed that if the radius is too great,then the samples in different classes may fall into the same neighborhood,and they may result in imprecise or inconsistent information.To alleviate the problem,the strategy of pseudo⁃label neighborhood has been proposed.Nevertheless,in both traditional neighborhood and pseudo⁃label neighborhood,the similarities of the samples are only measured by the distances between them,while the structural relationship of neighborhoods related to different samples contained in one neighborhood information granule is ignored.In view of this,through introducing the measure for neighborhood distance,the mechanism of co⁃occurrence neighborhood information granulation is proposed.Based on such mechanism,co⁃occurrence neighborhood rough set model and pseudo⁃label co⁃occurrence neighborhood rough set model are constructed.Then,the forward greedy searching strategy is employed to obtain the corresponding reducts.The experimental results demonstrate that compared with the reduct based on the neighborhood relation and pseudo⁃label neighborhood relation,the reduct based on co⁃occurrence neighborhood may provide the higher reduction ratio while the classification accuracy does not decrease.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13