检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白杰[1] 张正 王伟[1] BAI Jie;ZHANG Zheng;WANG Wei(Key Laboratory of Civil Aircraft Airworthiness and Maintenance,Civil Aviation University of China,Tianjin 300300,China;College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学民用航空器适航与维修重点实验室,天津300300 [2]中国民航大学航空工程学院,天津300300
出 处:《机械设计与制造》2021年第1期62-66,共5页Machinery Design & Manufacture
基 金:中国民航大学研究生科技创新基金项目(ZYGH2018018)。
摘 要:针对基于部件级航空发动机稳态建模过程中完整、准确的航空发动机部件特性数据往往难以获取,建模时间长等现象,提出使用实验数据进行辨识建模的方法;为了建立航空发动机的稳态模型,通过对某轻型飞机实验台的飞行实验数据进行分析整理,提出使用BP神经网络对发动机重要参数进行建模,同时使用粒子群优化算法(Particle swarm optimization,PSO)对BP神经网络的权值和阈值进行优化。最后,使用改进粒子群优化算法(Improved particle swarm optimization algorithm,IPSO)对传统粒子群优化算法进行改进,仿真结果表明IPSO-BP网络建立的发动机模型精度更高,稳定性更好。For the complete and accurate aeroengine component characteristic data in the steady state modeling process of component-based aeroengines,it was often difficult to obtain,and the modeling time was long.The method of using experimental data for identification modeling was proposed.In order to establish the steady state model of the aeroengine,by analyzing and collating the flight experimental data of a light aircraft test bench,it was proposed to use BP neural network to model the important parameters of the engine,At the same time,Particle Swarm Optimization(PSO)was used to optimize the weight and threshold of BP neural network.Finally,the improved particle swarm optimization algorithm(IPSO)was used to improve the traditional particle swarm optimization algorithm.The simulation results show that the engine model established by IPSO-BP network has higher precision and better stability.
关 键 词:航空发动机 模型辨识 稳态模型 神经网络 改进粒子群优化算法
分 类 号:TH16[机械工程—机械制造及自动化] V233.7[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90