检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁嘉鑫 王振亚 姚立纲[1] 蔡永武 DING Jiaxin;WANG Zhenya;YAO Ligang;CAI Yongwu(School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou,350116)
机构地区:[1]福州大学机械工程及自动化学院,福州350116
出 处:《中国机械工程》2021年第2期147-155,共9页China Mechanical Engineering
基 金:国家自然科学基金(51775114,51275092);福建省工业机器人基础部件技术重大研发平台项目(2014H21010011)。
摘 要:针对滚动轴承特征提取和故障识别两个关键环节,提出了一种广义复合多尺度加权排列熵(GCMWPE)与参数优化支持向量机相结合的故障诊断方法。利用GCMWPE全面表征滚动轴承故障特征信息,构建高维故障特征集。应用监督等度规映射(S-Isomap)算法进行有效的二次特征提取。采用天牛须搜索优化支持向量机(BAS-SVM)诊断识别故障类型。将所提方法应用于滚动轴承实验数据分析过程,结果表明:GCMWPE特征提取效果优于多尺度加权排列熵、复合多尺度加权排列熵和广义多尺度加权排列熵;GCMWPE与S-Isomap相结合的特征提取方法可在低维空间中有效区分滚动轴承不同故障类型;BAS-SVM的识别正确率和识别速度优于粒子群优化支持向量机、模拟退火优化支持向量机和人工鱼群优化支持向量机;所提方法能够有效、精准地识别出各故障类型。Aiming at the two key links of rolling bearing feature extraction and fault identification,a fault diagnosis was proposed based on GCMWPE and parameter optimization SVM.First,the GCMWPE was applied to comprehensively characterize rolling bearing fault feature information,and a high-dimensional fault feature set was constructed.Then,the S-Isomap(isometric mapping)was utilized for efficient secondary feature extraction.Finally,BAS(beetle antennae search)-SVM was employed to diagnose and identify fault types.The proposed method was applied to the experimental data analysis of rolling bearings,and the results show that the feature extraction effect of GCMWPE is superior than that of multiscale weighted permutation entropy,composite multiscale weighted permutation entropy,and generalized multiscale weighted permutation entropy;the feature extraction method combining GCMWPE and S-Isomap may effectively distinguish different fault types of rolling bearings in low-dimensional space;the recognition accuracy and recognition speed of BAS-SVM is better than that of particle swarm optimization SVM,simulated annealing SVM and artificial fish swarm algorithm support vector machine;the proposed method may effectively and accurately identify each fault types.
关 键 词:广义复合多尺度加权排列熵 支持向量机 等度规映射 滚动轴承 故障诊断
分 类 号:TH165.3[机械工程—机械制造及自动化] TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.255.34