检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:臧鸿雁[1] 韦心元 袁悦 ZANG Hongyan;WEI Xinyuan;YUAN Yue(Mathematics and Physics School,University of Science and Technology Beijing,Beijing 100083,China)
出 处:《电子与信息学报》2021年第2期454-460,共7页Journal of Electronics & Information Technology
基 金:中央高校基本科研业务费专项资金(06108236)。
摘 要:该文给出了一般3次多项式映射与分段线性混沌映射拓扑共轭的充分条件,从而间接地给出了一般3次多项式成为混沌系统的充分条件。进一步对拓扑共轭的分段线性映射和多项式映射的均匀性、结构复杂性和随机性进行了分析,结果显示分段线性映射的均匀性优于多项式映射,多项式映射的随机性优于分段线性映射,在结构复杂性方面,二者没有显著差异,但量化方法对二者的结构复杂性影响显著。This paper provides the sufficient conditions for topological conjugation between the general cubic polynomial maps and a piecewise linear chaotic map,then provides indirectly the sufficient conditions that make the cubic polynomial maps be chaotic.This paper analyzes further the uniformity,structural complexity and randomness of the piecewise linear map and cubic polynomial maps of topological conjugation.The results show that the uniformity of the piecewise linear map is better than the polynomial maps while the randomness of the polynomial maps is superior to the piecewise linear map.As for the structural complexity,there is no significant difference between the two kinds of systems,but it should be noted that the quantitative method makes a significant impact on the structure complexity of the systems.
分 类 号:TN918.1[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.106.12