检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘佳 蔡文霞[1] 孙宏强[1] LIU Jia;CAI Wenxia;SUN Hongqiang(College of Mechanical and Electrical Engineering,Shijiazhuang University,Shijiazhuang 050035,China)
出 处:《机械科学与技术》2021年第3期371-376,共6页Mechanical Science and Technology for Aerospace Engineering
基 金:河北省高等学校科学技术研究项目(QN2020510);河北省教育厅高等学校科学研究项目(Z2019038);河北省省级科技计划自筹经费项目(18211928);石家庄学院博士科研启动基金项目(18BS014)。
摘 要:针对爬壁机器人的动力学建模问题,通过构造虚拟机构将爬壁机器人转换为具有固定基的开链系统,基于旋量理论并借助传统的拉格朗日建模方法给出了爬壁机器人未受约束时的动力学方程。借助Udwadia-Kalaba理论的建模思想,获得了爬壁机器人在预定轨迹下的解析动力学方程,避免了传统拉格朗日方程对于拉格朗日算子的依赖。数值仿真结果证明了该方法的有效性。Climbing robot is a typical rootless multi-body system.It was difficult to establish its dynamical equation with traditional Lagrange equation by means of Lagrange multiplier.A simple dynamics modeling method was presented to covert climbing robot into the multi-body system with fixed base through adding the dynamic nominal mechanism between the robot and the ground reference frame.The dynamical equation without constraint condition was firstly established using traditional Lagrange equation and screw theory.Then dynamical equation of climbing robot subject to some desired trajectory was acquired based on the Udwadia-Kalaba theory,which overcomed the disadvantage of obtaining dynamical equation from traditional Lagrange equation by Lagrange multiplier.The stimulation results of the motion trajectory of climbing robot proved that the dynamical equation established by this method conforms to the matter of fact.
关 键 词:爬壁机器人 动力学建模 旋量理论 Udwadia-Kalaba理论
分 类 号:TH113[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43