检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:殷雪凤 武斌[1] Yin Xuefeng;Wu Bin(School of Electronic Engineering,Xidian University,Xi’an 710126,Shanxi,China)
机构地区:[1]西安电子科技大学电子工程学院,陕西西安710126
出 处:《航天电子对抗》2021年第1期7-11,共5页Aerospace Electronic Warfare
摘 要:为解决雷达辐射源识别中特征提取困难、低信噪比条件下识别效率低的问题,提出了一种基于一维卷积神经网络和长短期记忆网络的深度学习智能识别算法,构建了一个CNN?LSTM网络,能实现对不同脉内调制方式雷达辐射源的端到端识别。该网络首先利用卷积层学习信号局部特征,然后将卷积层输出的结果输入长短期记忆网络,学习信号的全局特征,最终构造逻辑回归分类完成分类识别任务。仿真结果表明,该算法较单一卷积神经网络模型具有更好的识别效果,抗噪声效果更强,在-6 dB信噪比的条件下,识别的准确率仍能够达到90%以上。In order to solve problems of feature extraction and low recognition efficiency under low signal-tonoise ratio in radar emitter identification,a deep learning intelligent recognition algorithm is proposed based on one-dimensional convolutional neural network and long short-term memory(CNN-LSTM)network.A CNNLSTM network is constructed,which can realize end-to-end identification of different pulse modulation radar sources.The convolutional layers are used to learn the local characteristics of the signal by this network,and the long short-term memory layer is used to learn the global characteristics.Finally a logistic regression classification is constructed to complete the recognition task.Simulation results show that the algorithm has better recognition effect and stronger anti-noise effect compared with the single convolutional neural network model.Under the condition of-6 dB signal-to-noise ratio,the recognition accuracy can still reach more than 90%.
关 键 词:卷积神经网络 长短期记忆网络 雷达辐射源识别 深度学习
分 类 号:TN971.5[电子电信—信号与信息处理] TN974[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15