检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈子涵 吴浩博 裴浩东[3] 陈榕 胡佳新 时亨通 Chen Zihan;Wu Haobo;Pei Haodong;Chen Rong;Hu Jiaxin;Shi Hengtong(Futian Power Supply Bureau,Shenzhen Power Supply Bureau Co.,Ltd.,Shenzhen 518001,China;School of Electronic Engineering,Xidian University,Xi'an,Shaanxi 710071,China;Key Laboratory of Intelligent Infrared Perception,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China)
机构地区:[1]深圳供电局有限公司福田供电局,深圳518001 [2]西安电子科技大学电子工程学院,陕西西安710071 [3]中国科学院上海技术物理研究所中国科学院智能红外感知重点实验室,上海200083
出 处:《激光与光电子学进展》2021年第4期191-198,共8页Laser & Optoelectronics Progress
基 金:深圳供电局有限公司科技项目(0909002019030103FTPW00064);中国科学院智能红外感知重点实验室开放课题。
摘 要:针对现有图像超分辨重建方法难以充分重建图像的细节信息且易出现重建的图像缺乏层次的问题,提出一种基于自注意力深度网络的图像超分辨重建方法。以深度神经网络为基础,通过提取低分辨率图像特征,建立低分辨率图像特征到高分辨率图像特征的非线性映射,重建高分辨率图像。在进行非线性映射时,引入自注意力机制,获取图像中全部像素间的依赖关系,利用图像的全局特征指导图像重建,增强图像层次。在训练深度神经网络时,使用图像像素级损失和感知损失作为损失函数,以强化网络对图像细节信息的重建能力。在3类数据集上的对比测试结果表明,所提方法能够提升图像超分辨重建结果的细节信息,且重建图像的视觉效果更好。It is difficult to fully recover the image details using the existing image super-resolution reconstruction methods.Furthermore,the reconstructed images lack a hierarchy.To address these problems,an image super-resolution reconstruction method based on self-attention deep networks is proposed herein.This method,which is based on deep neural networks,reconstructs a high-resolution image using the features extracted from a corresponding low-resolution image.It nonlinearly maps the features of a low-resolution image to those of a high-resolution image.In the process of nonlinear mapping,the self-attention mechanism is utilized to obtain the dependence among all the pixels in the images,and the global features of the images are used to reconstruct the corresponding high-resolution image,which promotes image hierarchy.During the deep neural network training,a loss function comprising a pixel-wise loss and a perceptual loss is utilized to improve the image-detail reconstruction ability of the neural network.Experiments on three open datasets show that the proposed method outperforms the existing methods in terms of image-detail reconstruction.Furthermore,the visual impression of the reconstructed image is better than that of the images reconstructed using other existing methods.
关 键 词:图像处理 图像超分辨 自注意力机制 感知损失 深度网络 卷积神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28