检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈华华[1] 陈哲 郭春生[1] 应娜[1] 叶学义[1] 章坚武[1] CHEN Huahua;CHEN Zhe;GUO Chunsheng;YING Na;YE Xueyi;ZHANG Jianwu(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China)
机构地区:[1]杭州电子科技大学通信工程学院,浙江杭州310018
出 处:《电信科学》2021年第4期54-61,共8页Telecommunications Science
摘 要:异常数据是指偏离大量正常数据点的数据,往往会对各类系统产生负面影响,存在较大风险。异常检测作为一种有效的防护手段,能够检测数据中的异常,为各类系统的正常运转提供重要支撑,具有重要的现实意义。提出了一种基于混合高斯变分自编码网络的异常检测算法,该算法首先使用混合高斯先验构建变分自编码器,对输入数据进行特征提取,然后以混合高斯变分自编码器构建深度支持向量网络,压缩特征空间,并寻找最小超球体分离正常数据和异常数据,通过计算数据特征到超球体中心的欧氏距离衡量数据的异常分数,并以此进行异常检测。最后在基准数据集MNIST和Fashion-MNIST上评估了该算法,平均AUC分别达到了0.954和0.937。实验结果表明,所提出的算法取得了较好的异常检测效果。Anomalous data,which deviates from a large number of normal data,has a negative impact and contains a risk on various systems.Anomaly detection can detect anomalies in the data and provide important support for the normal operation of various systems,which has important practical significance.An anomaly detection algorithm based on Gaussian mixture variational auto encoder network was proposed,in which a variational autoencoder was built to extract the features of the input data based on Gaussian mixture distribution,and using this variational autoencoder to construct a deep support vector network to compress the feature space and find the minimum hyper sphere to separate the normal data and the abnormal data.Anomalies can be detected by the score from the Euclidean distance from the feature of data to the center of the hypersphere.The proposed algorithm was evaluated on the benchmark datasets MNIST and Fashion-MNIST,and the corresponding average AUC are 0.954 and 0.937 respectively.The experimental results show that the proposed algorithm achieves preferable effects.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147