检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于军琪[1] 王佳丽[1] 赵安军[1] 解云飞 冉彤 赵泽华 YU Junqi;WANG Jiali;ZHAO Anjun;XIE Yunfei;RAN Tong;ZHAO Zehua(School of Building Services Science and Engineering,Xi an University of Architecture and Technology, 710055,Shaanxi Province,P.R.China)
机构地区:[1]西安建筑科技大学建筑设备科学与工程学院,陕西西安710055
出 处:《深圳大学学报(理工版)》2021年第3期315-323,共9页Journal of Shenzhen University(Science and Engineering)
基 金:陕西省重点研发计划项目(社发领域)(2017ZDL-SF-16-5);安徽建筑大学智能建筑与建筑节能安徽省重点实验室开放课题资助项目(Z201990383)。
摘 要:为提高建筑电力负荷的预测精度,在考虑天气信息和日期类型等影响因素的基础上,提出基于吸引子传播(affinity propagation,AP)相似日选取和改进搜索者优化算法-径向基(fusion improvement seeker optimization algorithm-radial basis function,FISOA-RBF)神经网络的建筑用电短期负荷预测模型.采用AP算法对短期电力负荷进行相似日选取,以克服外界环境对建筑电力负荷预测精度的影响;以RBF神经网络的网络参数为优化对象,采用搜索者优化算法(seeker optimization algorithm,SOA)进行参数寻优,并引入融合改进策略提高传统人群算法的寻优性能,以进一步提高RBF神经网络的预测精度和学习速度;根据FISOA算法优化后的RBF神经网络对相似日数据进行训练,建立最优参数下的建筑短期电力负荷预测AP-FISOA-RBF模型.在相同数据集和气候特征条件下,与传统RBF、PSO-RBF和SOA-RBF预测模型相比,AP-FISOA-RBF模型平均预测绝对百分比误差分别降低了93.05%、83.60%和71.13%,平均预测速度分别提高了54.34%、39.25%和23.96%,表明AP-FISOA-RBF模型在预测精度和预测速度上的表现更好.In order to improve the accuracy of electrical load forecasting for large public buildings,we propose a forecasting model for the short-term load of large public buildings based on affinity propagation(AP)similar days selection and the fusion improvement seeker optimization algorithm-radial basis function(FISOA-RBF)neural network by considering the weather information,date type and other influencing factors.In order to overcome the influence of external environment on the accuracy of building electrical load forecasting,AP algorithm is used to select similar days of short-term electrical load.The structural parameters of RBF neural network are optimized by FISOA which uses the fusion improvement theory to further improve the prediction accuracy and the learning speed of RBF neural network.Finally,the similar daily load data are used to train an optimized FISOA-RBF to predict the short-term electrical load of buildings.In order to validate the effectiveness of the proposed model,the exhaustive experiments are conducted in comparison with RBF,PSO-RBF and SOA-RBF methods.The experimental results indicate that the proposed model outperforms the other models:the mean absolute percentage error(MAPE)is reduced by 93.05%,83.60%and 71.13%,and the average prediction speed is increased by 54.34%,39.25%and 23.96%,and thus demonstrate that AP-FISOA-RBF model in prediction accuracy and speed of prediction performance is better than other three RBF-based methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.123.254