未知噪声协方差的自适应容积卡尔曼滤波  被引量:4

Adaptive Cubature Kalman Filter Based on Unknown Noise Covariance

在线阅读下载全文

作  者:杨恒占[1] 王盛博 何红丽[2] YANG Hengzhan;WANG Shengbo;HE Hongli(School of Autonomous Systems and Intelligent Control International Joint Research Center,Xi’an Technological University,Xi’an 710021,China;Chinese Flight Test Establishment,Xi’an 710089,China)

机构地区:[1]西安工业大学陕西省自主系统与智能控制国际联合研究中心,西安710021 [2]中国飞行试验研究院,西安710089

出  处:《空军工程大学学报(自然科学版)》2021年第2期42-47,共6页Journal of Air Force Engineering University(Natural Science Edition)

基  金:国家自然科学基金(61773016,62073259)。

摘  要:针对噪声协方差不确定情况下容积卡尔曼滤波解决非线性目标跟踪中存在的问题,提出了一种优化的自适应容积卡尔曼滤波。首先根据新息序列和残差序列导出的线性矩阵方程得到噪声的协方差,基于新息序列与残差序列的相关性,推导出一种新的过程噪声协方差Q估计方法;然后采用残差序列对测量噪声协方差进行估计,利用加权因子将当前的噪声协方差矩阵与估计值组合成为新的测量噪声协方差阵R,有效避免了不准确状态估计的局限性。仿真结果表明:在时变噪声协方差的条件下,所提出的自适应容积卡尔曼算法的跟踪精度明显提高。Aimed at the problems that a lot of problems remains to be solved by cubature Kalman filter in nonlinear target tracking when the noise covariance is uncertain,an optimized adaptive cubature Kalman filter is proposed.First,the noise covariance is obtained by the linear matrix equation derived from the innovation sequence and the residual sequence,a new process noise covariance Q estimation method is derived based on the correlation between the innovation sequence and the residual sequence,and then the estimation of the measured noise covariance is made by adopting the residual sequence,and the weighting factors are utilized for combining the current noise covariance matrix and the estimated value into a new measurement noise covariance matrix R,thus avoiding effectively the limitations of inaccurate state estimation.The simulation results show that under conditions of time-varying noise covariance,the tracking accuracy is improving obviously by the proposed adaptive algorithm cubature Kalman filter.

关 键 词:自适应滤波 数据融合 目标跟踪 非线性滤波 未知噪声统计 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象