检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王美琪 贾思贤 陈恩利[1,2] 杨绍普 刘鹏飞[1,2] 戚壮 WANG Meiqi;JIA Sixian;CHEN Enli;YANG Shaopu;LIU Pengfei;QI Zhuang(State Key Laboratory of Structural Mechanics Behavior and System Safety of Traffic Engineering Jointly Established by the Ministry of Transport,Shijiazhuang Tiedao University,Hebei Shijiazhuang 050043,China;School of Mechanical Engineering,Shijiazhuang Tiedao University,Hebei Shijiazhuang 050043,China)
机构地区:[1]石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,河北石家庄050043 [2]石家庄铁道大学机械工程学院,河北石家庄050043
出 处:《摩擦学学报》2021年第1期65-75,共11页Tribology
基 金:国家自然科学基金项目(11790282,11702179);河北省高等学校科学技术研究青年拔尖人才项目(BJ2019035);河北省自然科学基金(E2018210052);石家庄铁道大学研究生创新项目(YC2020030)资助。
摘 要:针对难以建立轮轨磨耗的单一模型和无法对各种工况下车轮踏面磨耗进行定量计算的问题,提出一种基于SQPSO优化DELM的踏面磨耗测量方法(SQPSO-DELM).首先将衍生特性引入到极限学习机中,提出一种衍生极限学习机模型(DELM).然后引入序列二次规划(SQP)方法和量子粒子群优化(QPSO)算法,对DELM的参数进行优化.通过SQPSO-DELM预测模型,对车辆动力学模型模拟不同试验参数下的车轮踏面最大磨耗量以及对现场列车踏面磨耗程度的实际测量值进行训练和预测.结果表明:SQPSO-DELM预测模型的性能参数指标均优于LSSVM、ELM、PSO-ELM和QPSO-ELM,能较好地反映不同参数对车轮踏面磨耗值的影响规律.In view of the difficulty in establishing accurate mathematical model of wheel rail wear and in evaluating,predicting and quantitatively calculating wheel rail wear under various working conditions, this paper proposed a tread wear prediction method based on SQPSO optimized DELM model(SQPSO-DELM). First of all, the derivative characteristics were introduced into the learning machine, and a derivative learning machine model(DELM) was proposed. Then, the sequential quadratic programming(SQP) and quantum particle swarm optimization(QPSO)algorithm were introduced to optimize the parameters of DELM. Through SQPSO-DELM prediction model, the maximum wear of wheel tread under different test parameters of vehicle dynamics model simulation and the actual measured value of wear degree of on-site train tread were trained and predicted. The results showed that the performance parameters of SQPSO-DELM prediction model were better than LSSVM, ELM, PSO-ELM and QPSO-ELM, which can better reflect the influence of different parameters on wheel tread wear value.
关 键 词:极限学习机 量子粒子群优化算法 车轮踏面磨耗 模型辨识 车辆动力学
分 类 号:TH117.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.199.214