检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王建中[1] 王洪枫 刘弘扬 李博 孙庸 张驰逸 WANG Jianzhong;WANG Hongfeng;LIU Hongyang;LI Bo;SUN Yong;ZHANG Chiyi(School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出 处:《北京理工大学学报》2021年第6期629-635,共7页Transactions of Beijing Institute of Technology
基 金:国家部委基础科研计划资助项目(JCKY2019602C015)。
摘 要:针对敌士兵数据集样本较少的问题,提出一种基于YOLOv3的少样本深度学习目标检测方法.利用数据增广提高少样本目标检测模型的鲁棒性,改进网络结构将浅层网络特征图跨层连接至深层网络,采用k-means聚类获取适合士兵目标特性的锚点框,利用预训练提高模型训练收敛速度.实验结果表明,本文方法对少样本敌士兵目标检测成功率mAP达到85.6%、检测精度IOU达到82.18%,且对小型和遮挡目标检测效果较好;部署在NVIDIA TITAN V GPU计算机和NVIDIA Xavier嵌入式计算平台上的检测速度分别达到54.6和26.8 fps,实时性好.A deep learning method detection for target with few samples based on YOLOv3 was proposed to solve the problem of small enemy soldiers’datasets.Data augmentation was used to improve the robustness of the small-sample target detection model,and improve the network structure by connecting the shallow network feature map to the deep network across layers.k-means clustering was used to obtain anchor boxes suitable for soldier target characteristics,and pre-training was used to improve the convergence speed of model training.The results show that the method in this paper has a success rate(mAP)of 85.6%for target detection of enemy soldiers with small enemy soldiers’datasets,a detection accuracy(IOU)of 82.18%,and a good detection effect for small and occluded targets.The detection speed deployed on NVIDIA TITAN V GPU computer and NVIDIA Xavier reaches 54.6 and 26.8 fps,which means a good real-time performance.
分 类 号:TP23[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.255.255