具混合边界条件的趋化-流体耦合模型解的整体存在性  

Global solvability to a coupled chemotaxis-fluid model with mixed boundary conditions

在线阅读下载全文

作  者:金春花[1] 尹景学[1] Chunhua Jin;Jingxue Yin

机构地区:[1]华南师范大学数学科学学院,广州510631

出  处:《中国科学:数学》2021年第6期917-936,共20页Scientia Sinica:Mathematica

基  金:国家自然科学基金(批准号:11871230和11771156)资助项目。

摘  要:本文考虑如下趋化-流体耦合模型的混合边值问题:■主要研究其在空间有界二维区域上解的整体存在性及一致有界性问题.首先,证明慢扩散情形(m>1)混合非齐次边值问题的一致有界弱解的整体存在性.其次,考虑线性扩散情形(m=1),对于混合齐次边值问题,得到经典解的整体存在性.This paper is concerned with the following chemotaxis-fluid model■with mixed boundary value conditions.We mainly study the global existence and uniform boundedness of weak solutions in a bounded domain of R2.Firstly,we prove the global existence of uniformly bounded weak solutions for the porous medium slow diffusion model(m>1)with non-homogeneous boundary conditions.Then we also consider the linear diffusion case(m=1)with homogeneous boundary conditions,and prove the existence of global bounded classical solutions.

关 键 词:趋化-流体耦合模型 混合边界 弱解 经典解 一致有界性 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象