深度卷积长短期记忆网络的轴承故障诊断  被引量:17

Bearing Fault Diagnosis Using Deep CNN and LSTM

在线阅读下载全文

作  者:孙洁娣[1,2] 毛新茹 温江涛[3] 张鹏程 张光宇 SUN Jiedi;MAO Xinru;WEN Jiangtao;ZHANG Pengcheng;ZHANG Guangyu(School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China;Hebei Key Laboratory of Information Transmission and Signal Processing,Yanshan University,Qinhuangdao 066004,Hebei,China;3.Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Yanshan University,Qinhuangdao 066004,Hebei,China)

机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004 [2]燕山大学河北省信息传输与信号处理重点实验室,河北秦皇岛066004 [3]燕山大学河北省测试计量技术及仪器重点实验室,河北秦皇岛066004

出  处:《机械科学与技术》2021年第7期1091-1099,共9页Mechanical Science and Technology for Aerospace Engineering

基  金:国家自然科学基金项目(61973262,62073282);河北省自然科学基金项目(E2020203061);河北省引进留学人员资助项目(C201827);河北省高等学校科学技术研究项目(QN2019133);京津冀联合攻关重点研发计划(19YFSLQY00080)。

摘  要:针对传统数据驱动故障诊断方法难以从轴承信号中自适应提取有效特征、没有充分利用故障数据的时序特点以及缺乏自适应处理动态信息能力的问题,提出了一种深度卷积神经网络与长短期记忆网络相结合的智能故障诊断方法。本文方法构建的深度模型能够从轴承原始信号中自适应地提取鲁棒性特征,然后利用长短期记忆网络学习特征中的时间依赖关系实现了高准确度的轴承故障诊断。该方法克服了传统特征提取方法依赖专家经验和信息利用不完全等问题,实现了故障的智能、准确诊断。实验结果表明,该方法可以提取更准确的特征而且由于利用了故障演变过程中的时序信息,使得故障诊断更加智能、可靠。There exists some problems in traditional data-driven fault diagnosis methods,for example,it is difficult to adaptively extract effective features from bearing signals,cannot make full use of the timing characteristics of fault data,and lacks of the ability to adaptively process dynamic information.An intelligent bearing fault diagnosis method combined deep convolutional neural network and long-term and short-term memory network is proposed.This method constructed a kind of deep networks and can adaptively extract the robust features from the original bearing signals,and then utilized the long short-term memory network to learn the time-dependent relationship in these features,and achieved high-accuracy bearing fault diagnosis.The proposed method overcame the problems existed in the traditional feature extraction methods,such as heavy dependence on expert experience and incomplete utilization for time series information,and realized intelligent and accurate diagnosis of faults.The experimental results show that the proposed method can extract more accurate features and make the fault diagnosis more intelligent and reliable by utilizing the timing information in the process of fault degradation.

关 键 词:轴承故障诊断 卷积神经网络 循环神经网络 时序序列 

分 类 号:TH865[机械工程—仪器科学与技术] TP29[机械工程—精密仪器及机械]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象