带有完全分布式观测器的多智能体系统自适应容错一致性  被引量:4

Fully distributed observer-based adaptive fault-tolerant consensus control for multi-agent systems

在线阅读下载全文

作  者:尹艳辉 王付永 刘忠信 陈增强[1,2] YIN Yan-hui;WANG Fu-yong;LIU Zhong-xin;CHEN Zeng-qiang(College of Artificial Intelligence,Nankai University,Tianjin 300350,China;Tianjin Key Laboratory of Intelligent Robotics,Nankai University,Tianjin 300350,China)

机构地区:[1]南开大学人工智能学院,天津300350 [2]南开大学智能机器人技术重点实验室,天津300350

出  处:《控制理论与应用》2021年第7期1082-1090,共9页Control Theory & Applications

基  金:天津市自然科学基金项目(20JCYBJC01060,20JCQNJC01450,19JCZDJC32800);国家自然科学基金项目(61973175)资助。

摘  要:针对一类同时带有执行器故障,未知非线性动态和非匹配干扰的多智能体系统,本文提出一种新的自适应容错控制方案.首先,设计一种适用于有向切换拓扑的完全分布式观测器估计领导者的信息,将一致性问题转化为局部的信号跟踪问题.其次,拆解转化后的误差系统为两个耦合的子系统,实现非匹配干扰与匹配因子分离.然后,利用径向基神经网络近似非线性动态,并结合反步法设计3种自适应故障补偿器,使系统能够在线补偿故障和未知动态的影响.最后,数值仿真验证了所提方案的有效性.This paper investigates the fault-tolerant control for leader-following multi-agent systems with mismatched disturbances and unknown nonlinear dynamics.To begin with,a fully distributed observer is designed to estimate the state of the leader under directed switching topology,which translates the consensus problem into a local tracking problem.Next,by state transformation the error system is decoupled into two cascade systems,which separates the mismatched disturbances and the matched faulty factors.Thirdly,the radial basis function neural network is utilized to approximate the unknown nonlinear dynamics,based on which,three fault compensators are designed by combining with the backstepping method.It is proven that the consensus tracking problem can be solved,and the effects of mismatched disturbances,actuator faults and unknown nonlinear dynamics can be eliminated adaptively online.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocols.

关 键 词:多智能体系统 容错控制 一致性 自适应故障补偿器 神经网络 反步法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象