检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鞠夕强 孟文[1,2] 孟祥印 谢江鹏[1,2] JU Xi-qiang;MENG Wen;MENG Xiang-yin;XIE Jiang-peng(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China;Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province,Chengdu 610031,China)
机构地区:[1]西南交通大学机械工程学院,成都610031 [2]轨道交通运维技术与装备四川省重点实验室,成都610031
出 处:《科学技术与工程》2021年第20期8537-8543,共7页Science Technology and Engineering
基 金:四川省应用基础项目(VQ21SS1102Y14012)。
摘 要:针对毫米波雷达数据均匀性差,数据量小,噪点多等问题,提出一种基于DBSCAN(density-based spatial clustering of applications with noise)的雷达自适应聚类算法。改进算法能够根据K近邻距离和目标反射截面自适应调整聚类半径。首先给出一种聚类半径根据K近邻距离动态调整的机制:目标第K个近邻的距离与阈值相比较,以确定阈值半径取值。再提取雷达提供的目标反射截面,基于该值计算目标假象半径作为聚类半径的补充量。实现根据目标反射截面与数据稀疏程度自适应聚类的效果。将改进算法与不同参数的DBSCAN聚类算法在真实雷达点云数据进行实验对比。相较于选取合适参数的DBSCAN算法,改进算法能够更好适应毫米波雷达点云特征,对行人目标识别准确率提高4.18%,对车辆目标识别准确率提高5.63%。A radar adaptive clustering algorithm based on improved density-based spatial clustering of applications with noise(DBSCAN)algorithm was proposed aiming at the problems of poor uniformity,small amount of data and more noise points.The improved algorithm can adjust the clustering radius adaptively,and the clustering radius is associated with K-nearest neighbor distance and the target reflection cross section.Firstly,a clustering radius dynamic adjustment mechanism based on K nearest neighbor distance was presented:the distance of the target s K nearest neighbor was compared with the threshold value to determine the value of threshold radius.Then the target reflection cross section provided by the radar was extracted and the target illusion radius was calculated as the supplement of the cluster radius based on this value.The adaptive clustering is achieved according to the reflection cross section of the target and the sparsity of the data.The improved algorithm was compared with DBSCAN clustering algorithm with different parameters in real radar point data.Compared with the DBSCAN algorithm with appropriate parameters,the improved algorithm can better adapt to the characteristics of millimeter wave radar points.The accuracy of pedestrian target recognition is improved by 4.18%,and the accuracy of vehicle target recognition is improved by 5.63%.
关 键 词:毫米波雷达 自适应聚类 改进DBSCAN算法 高级驾驶辅助系统(ADAS) 数据聚类
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15