非线性优化问题中的共轭梯度法研究综述  被引量:1

Review of Conjugate Gradient Method in Nonlinear Optimization Problems

在线阅读下载全文

作  者:杨雪 李锋[1] YANG Xue;LI Feng(College of Mathematics,Yunnan Normal University,Kunming,Yunnan,China 650500)

机构地区:[1]云南师范大学数学学院,云南昆明650500

出  处:《昆明学院学报》2021年第3期59-66,共8页Journal of Kunming University

摘  要:共轭梯度法是解决大规模线性等式和非线性优化问题的重要方法之一,其突出优点是收敛性强、迭代步骤简单、对存储要求低.因此,通过查阅大量国内外文献,介绍几种经典共轭梯度法及其改进算法的发展趋势和收敛性,并阐述混合共轭梯度法的研究热点以及共轭梯度法在图像复原和压缩感知中的应用,同时探讨了现有算法的局限性及其未来的研究方向.Conjugate gradient method is one of the important methods to solve large linear equation and nonlinear optimization problems.Its outstanding advantages are strong convergence,simple iterative steps and low storage requirements.Therefore,through the study of extensive domestic and foreign literature,we introduced several classical Conjugate gradient methods and the developing trend of its improving algorithm and convergence;stated the research focus of mixed conjugate gradient method and the application of conjugate gradient method in image restoration and compressed sensing.At the same time,the shortcoming of existing algorithms and possible research directions in the future were given.

关 键 词:混合共轭梯度法 收敛性 压缩感知 图像复原 

分 类 号:O221[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象