检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段永峰[1] 顼文晴 DUAN Yongfeng;XU Wenqing(School of Economics and Management,Inner Mongolia University of Science and Technology,Baotou 014010,China)
机构地区:[1]内蒙古科技大学经济与管理学院,内蒙古包头014010
出 处:《物流科技》2021年第9期28-31,共4页Logistics Sci-Tech
摘 要:为解决煤炭企业机械设备备件库存积压、备件管理效率低问题,对国内外备件需求预测方法进行了研究。根据以往备件需求预测方法的优缺点,提出一种将BP神经网络模型与GM1,1模型相结合的备件需求预测方法。结果表明,与以往仅用BP神经网络模型预测相比,文章的BP神经网络模型与GM1,1模型相结合的备件需求预测方法更好,平均相对误差降低了16.59%,精度更高。In order to solve the problems of overstocking and low efficiency of spare parts management of mechanical equipment in coal enterprises,the demand forecasting methods of spare parts at home and abroad were studied.According to the advantages and disadvantages of the previous spare parts demand forecasting methods,a spare parts demand forecasting method combining BP neural network model with GM1,1 model is proposed.The results show that,compared with BP neural network model,the method of combining BP neural network model with GM1,1 model is better,the average relative error is reduced by 16.59%,and the accuracy is higher.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.234.255