检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李华玉 张超 陈巧[2] 王娟 彭希 徐志扬 刘浩栋 白明雄 陈永富[2] Li Huayu;Zhang Chao;Chen Qiao;Wang Juan;Peng Xi;Xu Zhiyang;Liu Haodong;Bai Mingxiong;Chen Yongfu(College of Forestry,Southwest Forestry University,Kunming Yunnan 650233,China;Institute of Forest Resource Information Techniques,Chinese Academy of Forestry/Key Laboratory of National Forestry and Grassland Administration on Forestry Remote Sensing and Information System,Beijing 100091,China;College of Forestry,Sichuan Aricultural University,Chengdu Sichuan 611130,China;East China Inventory and Planning Institute,National Forestry and Grassland Administration,Hangzhou Zhejiang 310019,China)
机构地区:[1]西南林业大学林学院,云南昆明650233 [2]中国林业科学研究院资源信息研究所,国家林业和草原局林业遥感与信息技术重点实验室,北京100091 [3]四川农业大学林学院,四川成都611130 [4]国家林业和草原局华东调查规划设计院,浙江杭州310019
出 处:《西南林业大学学报(自然科学)》2021年第5期105-113,共9页Journal of Southwest Forestry University:Natural Sciences
基 金:中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2018SZ008)资助。
摘 要:以亚热带林业实验中心年珠实验林场为研究区,以无人机可见光和LiDAR数据为数据源进行树种识别。基于CHM和可见光数据进行单木分割,对可见光数据和LiDAR数据进行特征提取,构建多特征集合;基于单木对象选择随机森林和支持向量机2种分类器进行分类识别,并利用混淆矩阵对不同数据源不同特征组合的12种方案进行精度评价,比较不同特征组合和分类器对树种分类精度的影响。结果表明:将基于CHM分割和多尺度分割结合的单木分割效果较好,满足单木树种识别需求。支持向量机的精度高于随机森林分类器,经过随机森林特征筛选之后精度优于未进行特征筛选的结果,总体平均精度提高1.45%,可见光和LiDAR数据结合较仅使用单一数据源平均精度提高了6.01%。特征筛选能减少维度灾难,有效难避免过多特征造成的冗余现象,进一步提高分类器的性能和效率。相对于随机森林分类器,支持向量机在对于多维的样本集以及训练样本有限的情况下,能够表现出更好的性能。多源数据结合能将不同数据源优势有效结合,提高分类精度。The Nianzhu experimental forest farm of subtropical forestry experimental center was selected as the research area, and the visible spectral and LiDAR data of UAV were used as data sources for tree species identification in this study. Based on CHM and visible spectral data, single-wood was firstly carried out, and then extracted features of visible spectral data and LiDAR data to build more characteristic collection. Based on object single-wood to choose RF and SVM classifier to classify recognition, and using confusion matrix to evaluate the accuracy of 12 schemes with different data sources and different feature combinations. To compare different characteristics of the combination and classifier to the influence of tree species classification accuracy. The results show that the single tree segmentation based on CHM segmentation and multiresolution segmentation is effective,which can meet the needs of single tree species identification;and the results show that the precision of SVM is higher than that of random forest classifier, and the precision after RF feature selection is better than those without feature selection. The overall accuracy is improved by 1.45% on average, and the average precision of visible spectral and LDAR data integration has improved the average accuracy by 6.01% compared with using only a single date source. It can be seen that feature selection can reduce dimension disaster, effectively avoid redundancy caused by too many features, and the performance and efficiency of classifiers are further improved. In contest to the RF classifier, SVM performs better in the case of limited multidimensional sample sets and training samples. The combination of multi-source data can effectively combine the advantages of different data sources and improve the classification accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222