基于卷积神经网络的小型建筑物检测算法  被引量:7

Small building detection algorithm based on convolutional neural network

在线阅读下载全文

作  者:赵若辰 王敬东[1] 林思玉 顾东泽 ZHAO Ruochen;WANG Jingdong;LIN Siyu;GU Dongze(College of automation engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

机构地区:[1]南京航空航天大学自动化学院,江苏南京211106

出  处:《系统工程与电子技术》2021年第11期3098-3106,共9页Systems Engineering and Electronics

基  金:国家自然科学基金(U1531110)资助课题。

摘  要:针对基于传统卷积神经网络的建筑物目标检测算法对于小型建筑物检测准确率低的问题,提出一种基于Mask-区域卷积神经网络(Mask-region convoluional neural networks,Mask-RCNN)模型的小目标检测算法模型。该模型对Mask-RCNN模型中的特征提取网络进行了改进,设计了一种带有注意力机制的多尺度组卷积神经网络,有效解决了小目标有用特征较少且易被背景特征和噪声干扰的问题。航拍图像实验结果表明,改进的检测模型使小型建筑物目标检测准确率较原始Mask-RCNN模型提升了28.9%,达到了0.663。并且整体检测准确率达到了0.843,有效提升了航拍建筑物检测准确性。Aiming at the low accuracy of building target detection algorithm based on traditional convolutional neural network for small buildings,a small target detection algorithm model based on Mask-region convolutional neural networks(Mask-RCNN)model is proposed.The model improves the feature extraction network in Mask-RCNN model,and designs a multi-scale group convolution neural network with attention mechanism,which effectively solves the problem that small targets have few useful features and are easy to be disturbed by background features and noise.The experimental results of aerial images show that the improved detection model improves the target detection accuracy of small buildings by 28.9%compared with the original Mask-RCNN model,reaching 0.663.And the overall detection accuracy reaches 0.843,which effectively improves the accuracy of aerial building detection.

关 键 词:建筑物检测 小目标检测 卷积神经网络 特征提取 注意力机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象