嵌套命名实体识别研究进展  被引量:12

Overview of Nested Named Entity Recognition

在线阅读下载全文

作  者:余诗媛 郭淑明[2] 黄瑞阳[2] 张建朋[2] 苏珂[1,2] YU Shi-yuan;GUO Shu-ming;HUANG Rui-yang;ZHANG Jian-peng;SU Ke(School of Software,Zhengzhou University,Zhengzhou 450001,China;National Digital Switching System Engineering and Technological R&D Center,Zhengzhou 450002,China)

机构地区:[1]郑州大学软件学院,郑州450001 [2]国家数字交换系统工程技术研究中心,郑州450002

出  处:《计算机科学》2021年第S02期1-10,29,共11页Computer Science

基  金:国家自然科学基金青年基金项目(620023840)。

摘  要:嵌套命名实体之间蕴含着丰富的语义关系与结构信息,对于关系抽取、事件抽取等下游任务的执行至关重要。近年来,深度学习技术由于能够获取文本中更为丰富的表征信息,在文本信息抽取模型的精确度上已经逐渐超过了传统基于规则的方法,因此许多学者开展了基于深度学习的嵌套命名实体识别技术研究,并获得了目前最先进的性能。对现有的嵌套命名实体识别技术进行了全面的综述,介绍了嵌套命名实体识别最具代表性的方法及最新应用技术,并对未来面临的挑战和发展方向进行了探讨和展望。There are rich semantic relations and structural information between nested named entities,which is very important for the implementation of downstream tasks such as relation extraction and event extraction.The accuracy of text information extraction model has gradually exceeded the traditional rule-based method.Therefore,many scholars have carried out research on nested named entity recognition technology based on deep learning,and obtained the most advanced performance.This paper reviews the existing nested named entity recognition technology,This paper gives a comprehensive review of the existing nested named entity recognition technology,introduces the most representative methods and the latest application technology of nested named entity recognition,and discusses and prospects the challenges and development direction in the future.

关 键 词:嵌套命名实体 序列标注 超图 跨度 命名实体识别 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象