检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李敏[1] 杨珊 何儒汉[1] 姚迅[1] 崔树芹[1] LI Min;YANG Shan;He Ruhan;YAO Xun;CUI Shuqin(School of Computer Science and Artificial Intelligence,Wuhan Textile University,Wuhan 430200,China)
机构地区:[1]武汉纺织大学计算机与人工智能学院,武汉430200
出 处:《现代纺织技术》2021年第6期62-66,共5页Advanced Textile Technology
基 金:湖北省教育厅科技项目(D20161605)。
摘 要:为了实现提花织物疵点自动检测,提出了一种结合视觉显著性和卷积神经网络的提花织物疵点检测方法。针对提花织物背景干扰的问题,利用视觉显著性模型(Context-aware,CA)抑制背景信息,突出疵点区域的显著性来获得图像的显著图;为了区分织物图像中是否存在疵点,使用在通用数据集上训练过的VGG16神经网络模型对提花织物图像的显著图分类。结果表明:该方法在提花织物疵点检测上平均准确率为97.07%,比直接利用VGG16模型对提花织物疵点检测的准确率提高了19.44%,是一种适合提花织物疵点检测的方法。In order to achieve the automatic detection of jacquard fabric defects,a method is proposed to detect jacquard fabric defects,which combines context-awareness and convolutional neural network.In order to solve the problem of background interference in the jacquard fabric,a context-aware(CA)model was used to suppress the background information and highlight the salience of the defect area to obtain a context-aware view of the image.To distinguish whether there are defects in the fabric image,the VGG16 neural network model trained on the general data set was used to classify the context-aware views of the image.The results show that this method has an average accuracy of 97.07%in the detection of jacquard fabric defects,which is 19.44%higher than that of the detection of jacquard fabric defects by the direct use of the VGG16 model.It is a suitable method for detecting jacquard fabric defects.
分 类 号:TS101.9[轻工技术与工程—纺织工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118