检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张毅[1] 田雪 翟相华 宋传静[3] Zhang Yi;Tian Xue;Zhai Xiang-Hua;Song Chuan-Jing(College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,Jiangsu,China;School of Science,Nanjing University of Science and Technology,Nanjing 210094,China;School of Mathematical Sciences,Suzhou University of Science and Technology,Suzhou 215009,Jiangsu,China)
机构地区:[1]苏州科技大学土木工程学院,江苏苏州215011 [2]南京理工大学理学院,南京210094 [3]苏州科技大学数学科学学院,江苏苏州215009
出 处:《力学学报》2021年第10期2814-2822,共9页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金(11972241,12002228,11802193);江苏省自然科学基金(BK20191454)资助项目。
摘 要:利用对称性和守恒律,可以简化动力学问题甚至求解力学系统的精确解,更好地理解其动力学行为.时间尺度分析将连续和离散动力学模型统一并拓展到时间尺度框架,既避免了重复研究又可揭示两者之区别和联系.因此,通过对称性来探寻在时间尺度的框架下新的守恒定律很有必要.本文首先建立了时间尺度上Lagrange方程,利用时间尺度微积分性质导出了时间尺度上Lagrange系统的两个重要关系式;其次,依据微分方程在单参数Lie变换群下的不变性,建立了时间尺度上Lie对称性的定义和确定方程;最后,建立了时间尺度上Lie对称性定理并利用上述关系式给出了证明,得到了时间尺度上Lagrange系统的新守恒量.当时间尺度取为实数集时,该守恒量退化为著名的Hojman守恒量.文末考察了一个两自由度时间尺度Lagrange系统,在3种不同时间尺度情形下得到了该系统的Hojman守恒量,数值计算结果验证了定理的正确性.By using symmetry and conservation laws,we can simplify dynamical problem and even obtain the exact solution of mechanical system,and better understand the dynamical behavior of system.Time scales analysis unifies and extends the continuous and discrete dynamics models to the time scales framework,which not only avoids repeated studies but also reveals the differences and connections between them.Therefore,it is necessary to explore new conservation laws in the framework of time scale through symmetry.Firstly,the Lagrange equations on time scales are established,and two important relations of time scales Lagrange system are derived by using the properties of time scales calculus.Secondly,according to the invariance of differential equation under the one-parameter Lie group of transformations,the definition of Lie symmetry on time scales and its determining equation are established.Thirdly,the Lie symmetry theorem on time scales is established and proved by using the above relations,and the new conservation laws of time scales Lagrange system are obtained.When the time scale is taken to the set of real numbers,the conservation laws degenerate to the famous Hojman conserved quantity.Finally,a two-degree-of-freedom time scales Lagrange system is investigated,and its Hojman conserved quantities are obtained in three different time scales,and the correctness of the theorem we obtained is verified by numerical calculation.
关 键 词:LAGRANGE系统 LIE对称性 HOJMAN守恒量 时间尺度
分 类 号:O316[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.163.178