具有对数势和浓度迁移率的Cahn-Hilliard方程的有限元数值分析  被引量:1

The Numerical Analysis of Finite Element For the Cahn-Hilliard Equation with Logarithmic Flory-Huggins Potential and Concentration Mobility

在线阅读下载全文

作  者:张然 王旦霞 贾宏恩 ZHANG Ran;WANG Dan-xia;JIA Hong-en(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]太原理工大学数学学院,山西晋中030024

出  处:《数学的实践与认识》2021年第22期153-163,共11页Mathematics in Practice and Theory

基  金:山西省自然科学基金(201901D111123)。

摘  要:研究具有对数势和浓度迁移率的Cahn-Hilliard方程.首先通过正则化方法,将对数势函数F(u)的域从(-1,1)拓展到了(-∞,∞);其次提出具有浓度迁移率的Cahn-Hilliard方程的半离散格式和全离散格式,其中时间上采用二阶Crank-Nicolson格式,空间上采用了混合有限元方法;然后证明了该格式是无条件能量稳定的,并对其进行了先验误差估计分析,最后通过数值算例验证了该方法的有效性.In this paper,we present a numerical scheme for the Cahn-Hilliard equation with logarithmic potential and concentration mobility.First of all,the domain of the logarithmic Flory-Huggins potential F(u)is extended from(—1,1)to(-∞,∞) by regularization.Secondly,the semi-discrete and fully discrete versions of the Cahn-Hilliard equation with concentration mobility are proposed.In the space,the mixed finite element method is adopted for discretization,and the second order scheme is adopted for discretization in the time.In addition,we show the scheme is energy dissipative and perform the error estimates in detail.The verification and validation of the proposed scheme is conducted via numerical examples in the end.

关 键 词:对数势 浓度迁移率 CAHN-HILLIARD方程 混合有限元方法 误差估计 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象