检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘卫军[1] 张衡衡 吴天祎 刘涛 尹子锐 PAN Weijun;ZHANG Hengheng;WU Tianyi;LIU Tao;YIN Zirui(School of Air Traffic Management,Civil Aviation Flight University of China,Guanghan 618307)
机构地区:[1]中国民航飞行学院空中交通管理学院,广汉618307
出 处:《舰船电子工程》2022年第1期73-78,共6页Ship Electronic Engineering
基 金:国家自然科学基金联合基金重点项目(编号:U1733203);国家重点研发计划(编号:2016YFB0502403);大学生创新创业项目(编号:S202010624096)资助。
摘 要:空中交通需求的增长迫切需要在繁忙的终端区准确地建立连续降落飞机间的间隔,因此需要准确地预测着陆速度,以提高机场吞吐量,同时避免飞机间的间隔过小带来的碰撞危险。论文利用获取的机载飞行信息和机场监视信息,利用神经网络建立飞机组之间后机的进近着陆速度预测模型,模拟后机进近到着陆跑道的最终进近速度剖面,使用确定R^(2)系数和均方根误差的拟合优度进行评估,在成都双流机场的数据条件下,模型准确预测了着陆速度,96%的情况下,弱阵风和强阵风条件下的误差幅度分别为12.2%和11.9%。通过结果得出,这两种阵风条件下的着陆速度预测的不确定性至少降低了9.35%。With the growth of air traffic demand,it is urgent to accurately establish the spacing between aircraft in busy termi⁃nal area,so it is necessary to accurately predict the landing speed,so as to improve the airport throughput and avoid the collision risk caused by too small spacing between aircraft.In this paper,using the acquired airborne flight information and airport monitor⁃ing information,the neural network is used to establish the prediction model of the approach and landing speed of the rear aircraft between aircraft groups.The final approach speed profile of the rear aircraft approaching to the landing runway is simulated and de⁃termined by using the neural network.Under the data condition of Chengdu Shuangliu airport,the model accurately predictes the landing speed.Under the condition of 96%,the error ranges of weak gust and gust are 12.2%and 11.9%respectively.The results show that the uncertainty of landing speed prediction under these two gust conditions is reduced by at least 9.35%.
分 类 号:V211.7[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.36.87